7,675 research outputs found

    KACST Arabic Text Classification Project: Overview and Preliminary Results

    No full text
    Electronically formatted Arabic free-texts can be found in abundance these days on the World Wide Web, often linked to commercial enterprises and/or government organizations. Vast tracts of knowledge and relations lie hidden within these texts, knowledge that can be exploited once the correct intelligent tools have been identified and applied. For example, text mining may help with text classification and categorization. Text classification aims to automatically assign text to a predefined category based on identifiable linguistic features. Such a process has different useful applications including, but not restricted to, E-Mail spam detection, web pages content filtering, and automatic message routing. In this paper an overview of King Abdulaziz City for Science and Technology (KACST) Arabic Text Classification Project will be illustrated along with some preliminary results. This project will contribute to the better understanding and elaboration of Arabic text classification techniques

    An ontology enhanced parallel SVM for scalable spam filter training

    Get PDF
    This is the post-print version of the final paper published in Neurocomputing. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2013 Elsevier B.V.Spam, under a variety of shapes and forms, continues to inflict increased damage. Varying approaches including Support Vector Machine (SVM) techniques have been proposed for spam filter training and classification. However, SVM training is a computationally intensive process. This paper presents a MapReduce based parallel SVM algorithm for scalable spam filter training. By distributing, processing and optimizing the subsets of the training data across multiple participating computer nodes, the parallel SVM reduces the training time significantly. Ontology semantics are employed to minimize the impact of accuracy degradation when distributing the training data among a number of SVM classifiers. Experimental results show that ontology based augmentation improves the accuracy level of the parallel SVM beyond the original sequential counterpart
    corecore