718 research outputs found

    Enhanced Characterness for Text Detection in the Wild

    Full text link
    Text spotting is an interesting research problem as text may appear at any random place and may occur in various forms. Moreover, ability to detect text opens the horizons for improving many advanced computer vision problems. In this paper, we propose a novel language agnostic text detection method utilizing edge enhanced Maximally Stable Extremal Regions in natural scenes by defining strong characterness measures. We show that a simple combination of characterness cues help in rejecting the non text regions. These regions are further fine-tuned for rejecting the non-textual neighbor regions. Comprehensive evaluation of the proposed scheme shows that it provides comparative to better generalization performance to the traditional methods for this task

    A Review on Text Detection Techniques

    Get PDF
    Text detection in image is an important field. Reading text is challenging because of the variations in images. Text detection is useful for many navigational purposes e.g. text on google API’s and traffic panels etc. This paper analyzes the work done on text detection by many researchers and critically evaluates the techniques designed for text detection and states the limitation of each approach. We have integrated the work of many researchers for getting a brief over view of multiple available techniques and their strengths and limitations are also discussed to give readers a clear picture. The major dataset discussed in all these papers are ICDAR 2003, 2005, 2011, 2013 and SVT(street view text).

    Fused Text Segmentation Networks for Multi-oriented Scene Text Detection

    Full text link
    In this paper, we introduce a novel end-end framework for multi-oriented scene text detection from an instance-aware semantic segmentation perspective. We present Fused Text Segmentation Networks, which combine multi-level features during the feature extracting as text instance may rely on finer feature expression compared to general objects. It detects and segments the text instance jointly and simultaneously, leveraging merits from both semantic segmentation task and region proposal based object detection task. Not involving any extra pipelines, our approach surpasses the current state of the art on multi-oriented scene text detection benchmarks: ICDAR2015 Incidental Scene Text and MSRA-TD500 reaching Hmean 84.1% and 82.0% respectively. Morever, we report a baseline on total-text containing curved text which suggests effectiveness of the proposed approach.Comment: Accepted by ICPR201

    Bridging text spotting and SLAM with junction features

    Get PDF
    Navigating in a previously unknown environment and recognizing naturally occurring text in a scene are two important autonomous capabilities that are typically treated as distinct. However, these two tasks are potentially complementary, (i) scene and pose priors can benefit text spotting, and (ii) the ability to identify and associate text features can benefit navigation accuracy through loop closures. Previous approaches to autonomous text spotting typically require significant training data and are too slow for real-time implementation. In this work, we propose a novel high-level feature descriptor, the “junction”, which is particularly well-suited to text representation and is also fast to compute. We show that we are able to improve SLAM through text spotting on datasets collected with a Google Tango, illustrating how location priors enable improved loop closure with text features.Andrea Bocelli FoundationEast Japan Railway CompanyUnited States. Office of Naval Research (N00014-10-1-0936, N00014-11-1-0688, N00014-13-1-0588)National Science Foundation (U.S.) (IIS-1318392

    Text Extraction From Natural Scene: Methodology And Application

    Full text link
    With the popularity of the Internet and the smart mobile device, there is an increasing demand for the techniques and applications of image/video-based analytics and information retrieval. Most of these applications can benefit from text information extraction in natural scene. However, scene text extraction is a challenging problem to be solved, due to cluttered background of natural scene and multiple patterns of scene text itself. To solve these problems, this dissertation proposes a framework of scene text extraction. Scene text extraction in our framework is divided into two components, detection and recognition. Scene text detection is to find out the regions containing text from camera captured images/videos. Text layout analysis based on gradient and color analysis is performed to extract candidates of text strings from cluttered background in natural scene. Then text structural analysis is performed to design effective text structural features for distinguishing text from non-text outliers among the candidates of text strings. Scene text recognition is to transform image-based text in detected regions into readable text codes. The most basic and significant step in text recognition is scene text character (STC) prediction, which is multi-class classification among a set of text character categories. We design robust and discriminative feature representations for STC structure, by integrating multiple feature descriptors, coding/pooling schemes, and learning models. Experimental results in benchmark datasets demonstrate the effectiveness and robustness of our proposed framework, which obtains better performance than previously published methods. Our proposed scene text extraction framework is applied to 4 scenarios, 1) reading print labels in grocery package for hand-held object recognition; 2) combining with car detection to localize license plate in camera captured natural scene image; 3) reading indicative signage for assistant navigation in indoor environments; and 4) combining with object tracking to perform scene text extraction in video-based natural scene. The proposed prototype systems and associated evaluation results show that our framework is able to solve the challenges in real applications

    Arabic cursive text recognition from natural scene images

    Full text link
    © 2019 by the authors. This paper presents a comprehensive survey on Arabic cursive scene text recognition. The recent years' publications in this field have witnessed the interest shift of document image analysis researchers from recognition of optical characters to recognition of characters appearing in natural images. Scene text recognition is a challenging problem due to the text having variations in font styles, size, alignment, orientation, reflection, illumination change, blurriness and complex background. Among cursive scripts, Arabic scene text recognition is contemplated as a more challenging problem due to joined writing, same character variations, a large number of ligatures, the number of baselines, etc. Surveys on the Latin and Chinese script-based scene text recognition system can be found, but the Arabic like scene text recognition problem is yet to be addressed in detail. In this manuscript, a description is provided to highlight some of the latest techniques presented for text classification. The presented techniques following a deep learning architecture are equally suitable for the development of Arabic cursive scene text recognition systems. The issues pertaining to text localization and feature extraction are also presented. Moreover, this article emphasizes the importance of having benchmark cursive scene text dataset. Based on the discussion, future directions are outlined, some of which may provide insight about cursive scene text to researchers
    • …
    corecore