201,336 research outputs found

    Text Document Categorization using Enhanced Sentence Vector Space Model and Bi-Gram Text Representation Model Based on Novel Fusion Techniques

    Get PDF
    The text document classification tasks passes under the Automatic Classification (also known as pattern Recognition) problem in Machine Learning and Text Mining. It is necessary to classify large text documents into specific classes, to make clear and search simply. Classified data are easy for users to browse. The important issue in usual text document classification is representing the features for classification of an unknown document into predefined categories. The Combination of classifiers is fused together to increase the accuracy classification result in a single text document. This paper states a novel fusion approach to classify text documents by considering ES-VSM and Bigram representation models for text documents. ES-VSM: Enhanced Sentence –Vector Space Model is an advanced feature of the sentence based vector space model and extension to simple VSM will be considered for the constructive representation of text documents. The main objective of the study is to boost the accuracy of text classification by accounting for the features extracted from the text document. The proposed system concatenates two different representation models of the text documents for designing two different classifiers and feeds them as one input to the classifier. An enhanced S-VSM and interval-valued representation model are considered for the effective representation of text documents. A word level neural network Bigram representation of text documents is proposed for effective capturing of semantic information present in the text data. A Proposed approach improves the overall accuracy of text document classification to a significant extent. Keywords: ES-VSM; Fusion, Text Document Classification, Neural Network, Text Representation, Machine learning. DOI: 10.7176/NMMC/93-03 Publication date:September 30th 2020

    Multimodal Side-Tuning for Document Classification

    Full text link
    In this paper, we propose to exploit the side-tuning framework for multimodal document classification. Side-tuning is a methodology for network adaptation recently introduced to solve some of the problems related to previous approaches. Thanks to this technique it is actually possible to overcome model rigidity and catastrophic forgetting of transfer learning by fine-tuning. The proposed solution uses off-the-shelf deep learning architectures leveraging the side-tuning framework to combine a base model with a tandem of two side networks. We show that side-tuning can be successfully employed also when different data sources are considered, e.g. text and images in document classification. The experimental results show that this approach pushes further the limit for document classification accuracy with respect to the state of the art.Comment: 2020 25th International Conference on Pattern Recognition (ICPR

    Syntax-driven Data Augmentation for Named Entity Recognition

    Full text link
    In low resource settings, data augmentation strategies are commonly leveraged to improve performance. Numerous approaches have attempted document-level augmentation (e.g., text classification), but few studies have explored token-level augmentation. Performed naively, data augmentation can produce semantically incongruent and ungrammatical examples. In this work, we compare simple masked language model replacement and an augmentation method using constituency tree mutations to improve the performance of named entity recognition in low-resource settings with the aim of preserving linguistic cohesion of the augmented sentences.Comment: submitted to Pattern-based Approaches to NLP in the Age of Deep Learning 2022 (Pan-DL 2022

    Application of the recommendation architecture for discovering associative similarities in text

    Get PDF
    We investigate the use of the Recommendation Architecture (RA) for discovering associative similarities in text documents. RA is a connectionist model that simulates the pattern synthesizing and pattern recognition functions of the human brain. For this purpose a set of experiments has been carried out to adjust the parameters of the system to classify newsgroup postings belonging to 10 different categories. The variation and the poor quality of such a data set poses an interesting challenge to any intelligent classification system. A suitable feature selection scheme is devised to represent the input document set. Then the input is organized by the system into a hierarchy of repeating patterns that sets up a preferred path to the output. We report on the key findings of this experiment and the features of the Recommendation Architecture model that makes it suitable for classification of noisy and complex real world data

    Handwriting recognition by using deep learning to extract meaningful features

    Full text link
    [EN] Recent improvements in deep learning techniques show that deep models can extract more meaningful data directly from raw signals than conventional parametrization techniques, making it possible to avoid specific feature extraction in the area of pattern recognition, especially for Computer Vision or Speech tasks. In this work, we directly use raw text line images by feeding them to Convolutional Neural Networks and deep Multilayer Perceptrons for feature extraction in a Handwriting Recognition system. The proposed recognition system, based on Hidden Markov Models that are hybridized with Neural Networks, has been tested with the IAM Database, achieving a considerable improvement.Work partially supported by the Spanish MINECO and FEDER founds under project TIN2017-85854-C4-2-R.Pastor Pellicer, J.; Castro-Bleda, MJ.; España Boquera, S.; Zamora-Martinez, FJ. (2019). Handwriting recognition by using deep learning to extract meaningful features. AI Communications. 32(2):101-112. https://doi.org/10.3233/AIC-170562S101112322Baldi, P., Brunak, S., Frasconi, P., Soda, G., & Pollastri, G. (1999). Exploiting the past and the future in protein secondary structure prediction. Bioinformatics, 15(11), 937-946. doi:10.1093/bioinformatics/15.11.937LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. doi:10.1038/nature14539Bertolami, R., & Bunke, H. (2008). Hidden Markov model-based ensemble methods for offline handwritten text line recognition. Pattern Recognition, 41(11), 3452-3460. doi:10.1016/j.patcog.2008.04.003Bianne-Bernard, A.-L., Menasri, F., Mohamad, R. A.-H., Mokbel, C., Kermorvant, C., & Likforman-Sulem, L. (2011). Dynamic and Contextual Information in HMM Modeling for Handwritten Word Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(10), 2066-2080. doi:10.1109/tpami.2011.22C.M. Bishop, Neural networks for pattern recognition, Oxford University Press, 1995.T. Bluche, H. Ney and C. Kermorvant, Feature extraction with convolutional neural networks for handwritten word recognition, in: 12th International Conference on Document Analysis and Recognition (ICDAR), 2013, pp. 285–289.T. Bluche, H. Ney and C. Kermorvant, Tandem HMM with convolutional neural network for handwritten word recognition, in: 38th International Conference on Acoustics Speech and Signal Processing (ICASSP), 2013, pp. 2390–2394.T. Bluche, H. Ney and C. Kermorvant, A comparison of sequence-trained deep neural networks and recurrent neural networks optical modeling for handwriting recognition, in: Slsp-2014, 2014, pp. 1–12.H. Bourlard and N. Morgan, Connectionist Speech Recognition – A Hybrid Approach, Series in Engineering and Computer Science, Vol. 247, Kluwer Academic, 1994.Bozinovic, R. M., & Srihari, S. N. (1989). Off-line cursive script word recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(1), 68-83. doi:10.1109/34.23114H. Bunke, Recognition of cursive roman handwriting – past, present and future, in: International Conference on Document Analysis and Recognition, Vol. 1, 2003, pp. 448–459.E. Caillault, C. Viard-Gaudin and A. Rahim Ahmad, MS-TDNN with global discriminant trainings, in: International Conference on Document Analysis and Recognition (ICDAR), 2005, pp. 856–860.P. Doetsch, M. Kozielski and H. Ney, Fast and robust training of recurrent neural networks for offline handwriting recognition, in: 14th International Conference on Frontiers in Handwriting Recognition (ICFHR), 2014, pp. 279–284.P. Dreuw, P. Doetsch, C. Plahl and H. Ney, Hierarchical hybrid MLP/HMM or rather MLP features for a discriminatively trained Gaussian HMM: A comparison for offline handwriting recognition, in: International Conference on Image Processing (ICIP), 2011, pp. 3541–3544.Dreuw, P., Heigold, G., & Ney, H. (2011). Confidence- and margin-based MMI/MPE discriminative training for off-line handwriting recognition. International Journal on Document Analysis and Recognition (IJDAR), 14(3), 273-288. doi:10.1007/s10032-011-0160-xEspaña-Boquera, S., Castro-Bleda, M. J., Gorbe-Moya, J., & Zamora-Martinez, F. (2011). Improving Offline Handwritten Text Recognition with Hybrid HMM/ANN Models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(4), 767-779. doi:10.1109/tpami.2010.141A. Graves, S. Fernández, F. Gomez and J. Schmidhuber, Connectionist temporal classification: Labelling unsegmented sequence data with recurrent neural networks, in: 23rd International Conference on Machine Learning (ICML), ACM, 2006, pp. 369–376.A. Graves and N. Jaitly, Towards end-to-end speech recognition with recurrent neural networks, in: 31st International Conference on Machine Learning (ICML), 2014, pp. 1764–1772.Graves, A., Liwicki, M., Fernandez, S., Bertolami, R., Bunke, H., & Schmidhuber, J. (2009). A Novel Connectionist System for Unconstrained Handwriting Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(5), 855-868. doi:10.1109/tpami.2008.137A. Graves and J. Schmidhuber, Framewise phoneme classification with bidirectional LSTM networks, in: International Joint Conference on Neural Networks (IJCNN), Vol. 4, 2005, pp. 2047–2052.A. Graves and J. Schmidhuber, Offline handwriting recognition with multidimensional recurrent neural networks, in: Advances in Neural Information Processing Systems (NIPS), 2009, pp. 545–552.F. Grézl, M. Karafiát, S. Kontár and J. Černocký, Probabilistic and bottle-neck features for LVCSR of meetings, in: International Conference on Acoustics, Speech and Signal Processing (ICASSP), Vol. 4, 2007.Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735-1780. doi:10.1162/neco.1997.9.8.1735Impedovo, S. (2014). More than twenty years of advancements on Frontiers in handwriting recognition. Pattern Recognition, 47(3), 916-928. doi:10.1016/j.patcog.2013.05.027Jaeger, S., Manke, S., Reichert, J., & Waibel, A. (2001). Online handwriting recognition: the NPen++ recognizer. International Journal on Document Analysis and Recognition, 3(3), 169-180. doi:10.1007/pl00013559M. Kozielski, P. Doetsch and H. Ney, Improvements in RWTH’s system for off-line handwriting recognition, in: 12th International Conference on Document Analysis and Recognition (ICDAR), IEEE, 2013, pp. 935–939.A. Krizhevsky, I. Sutskever and G.E. Hinton, ImageNet classification with deep convolutional neural networks, in: Advances in Neural Information Processing Systems (NIPS), F. Pereira, C.J.C. Burges, L. Bottou and K.Q. Weinberger, eds, Vol. 25, Curran Associates, Inc., 2012, pp. 1097–1105.Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324. doi:10.1109/5.726791M. Liwicki, A. Graves, H. Bunke and J. Schmidhuber, A novel approach to on-line handwriting recognition based on bidirectional long short-term memory networks, in: 9th International Conference on Document Analysis and Recognition (ICDAR), 2007, pp. 367–371.Marti, U.-V., & Bunke, H. (2002). The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition, 5(1), 39-46. doi:10.1007/s100320200071S. Marukatat, T. Artieres, R. Gallinari and B. Dorizzi, Sentence recognition through hybrid neuro-Markovian modeling, in: 6th International Conference on Document Analysis and Recognition (ICDAR), 2001, pp. 731–735.F.J. Och, Minimum error rate training in statistical machine translation, in: 41st Annual Meeting on Association for Computational Linguistics, ACL’03, Vol. 1, 2003, pp. 160–167.J. Pastor-Pellicer, S. España-Boquera, M.J. Castro-Bleda and F. Zamora-Martínez, A combined convolutional neural network and dynamic programming approach for text line normalization, in: 13th International Conference on Document Analysis and Recognition (ICDAR), 2015.J. Pastor-Pellicer, S. España-Boquera, F. Zamora-Martínez, M. Zeshan Afzal and M.J. Castro-Bleda, Insights on the use of convolutional neural networks for document image binarization, in: The International Work-Conference on Artificial Neural Networks, Vol. 9095, 2015, pp. 115–126.V. Pham, T. Bluche, C. Kermorvant and J. Louradour, Dropout improves recurrent neural networks for handwriting recognition, in: International Conference on Frontiers in Handwriting Recognition (ICFHR), 2014, pp. 285–290.Plamondon, R., & Srihari, S. N. (2000). Online and off-line handwriting recognition: a comprehensive survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(1), 63-84. doi:10.1109/34.824821Plötz, T., & Fink, G. A. (2009). Markov models for offline handwriting recognition: a survey. International Journal on Document Analysis and Recognition (IJDAR), 12(4), 269-298. doi:10.1007/s10032-009-0098-4A. Poznanski and L. Wolf, CNN-N-gram for HandwritingWord recognition, in: Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 2305–2314.Puigcerver, J. (2017). Are Multidimensional Recurrent Layers Really Necessary for Handwritten Text Recognition? 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR). doi:10.1109/icdar.2017.20L.R. Rabiner, A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition, 1989.Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., … Fei-Fei, L. (2015). ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision, 115(3), 211-252. doi:10.1007/s11263-015-0816-yT.N. Sainath, B. Kingsbury and B. Ramabhadran, Auto-encoder bottleneck features using deep belief networks, in: International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2012, pp. 4153–4156.Sayre, K. M. (1973). Machine recognition of handwritten words: A project report. Pattern Recognition, 5(3), 213-228. doi:10.1016/0031-3203(73)90044-7Schenkel, M., Guyon, I., & Henderson, D. (1995). On-line cursive script recognition using time-delay neural networks and hidden Markov models. Machine Vision and Applications, 8(4), 215-223. doi:10.1007/bf01219589Schuster, M., & Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing, 45(11), 2673-2681. doi:10.1109/78.650093A.W. Senior and A.J. Robinson, An off-line cursive handwriting recognition system, in: IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 20, 1998, pp. 309–321.E. Singer and R.P. Lippman, A speech recognizer using radial basis function neural networks in an HMM framework, in: International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Vol. 1, IEEE, 1992, pp. 629–632.J. Stadermann, A hybrid SVM/HMM acoustic modeling approach to automatic speech recognition, in: International Conference on Spoken Language Processing (ICSLP), 2004.A. Stolcke, SRILM: An extensible language modeling toolkit, in: International Conference on Spoken Language Processing (ICSLP), 2002, pp. 901–904.C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke and A. Rabinovich, Going deeper with convolutions, in: Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 1–12.TOSELLI, A. H., JUAN, A., GONZÁLEZ, J., SALVADOR, I., VIDAL, E., CASACUBERTA, F., … NEY, H. (2004). INTEGRATED HANDWRITING RECOGNITION AND INTERPRETATION USING FINITE-STATE MODELS. International Journal of Pattern Recognition and Artificial Intelligence, 18(04), 519-539. doi:10.1142/s0218001404003344Toselli, A. H., Romero, V., Pastor, M., & Vidal, E. (2010). Multimodal interactive transcription of text images. Pattern Recognition, 43(5), 1814-1825. doi:10.1016/j.patcog.2009.11.019J.M. Vilar, Efficient computation of confidence intervals for word error rates, in: International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2008, pp. 5101–5104.Vinciarelli, A. (2002). A survey on off-line Cursive Word Recognition. Pattern Recognition, 35(7), 1433-1446. doi:10.1016/s0031-3203(01)00129-7Voigtlaender, P., Doetsch, P., & Ney, H. (2016). Handwriting Recognition with Large Multidimensional Long Short-Term Memory Recurrent Neural Networks. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR). doi:10.1109/icfhr.2016.0052E. Wang, Q. Zhang, B. Shen, G. Zhang, X. Lu, Q. Wu and Y. Wang, Intel math kernel library, in: High-Performance Computing on the Intel® Xeon Phi™, Springer, 2014, pp. 167–188.F. Zamora-Martínez et al., April-ANN Toolkit, a Pattern Recognizer in Lua, Artificial Neural Networks Module, 2013, https://github.com/pakozm/ [github.com]april-ann.Zamora-Martínez, F., Frinken, V., España-Boquera, S., Castro-Bleda, M. J., Fischer, A., & Bunke, H. (2014). Neural network language models for off-line handwriting recognition. Pattern Recognition, 47(4), 1642-1652. doi:10.1016/j.patcog.2013.10.020Zeyer, A., Beck, E., Schlüter, R., & Ney, H. (2017). CTC in the Context of Generalized Full-Sum HMM Training. Interspeech 2017. doi:10.21437/interspeech.2017-107

    Escritoire: A Multi-touch Desk with e-Pen Input for Capture, Management and Multimodal Interactive Transcription of Handwritten Documents

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-19390-8_53A large quantity of documents used every day are still handwritten. However, it is interesting to transform each of these documents into its digital version for managing, archiving and sharing. Here we present Escritoire, a multi-touch desk that allows the user to capture, transcribe and work with handwritten documents. The desktop is continuously monitored using two cameras. Whenever the user makes a specific hand gesture over a paper, Escritoire proceeds to take an image. Then, the capture is automatically preprocesses, obtaining as a result an improved representation. Finally, the text image is transcribed using automatic techniques and finally the transcription is displayed on Escritoire.This work was partially supported by the Spanish MEC under FPU scholarship (AP2010-0575), STraDA research project (TIN2012-37475-C02-01) and MITTRAL research project (TIN2009-14633-C03-01); the EU’s 7th Framework Programme under tranScriptorium grant agreement (FP7/2007-2013/600707).Martín-Albo Simón, D.; Romero Gómez, V.; Vidal Ruiz, E. (2015). Escritoire: A Multi-touch Desk with e-Pen Input for Capture, Management and Multimodal Interactive Transcription of Handwritten Documents. En Pattern Recognition and Image Analysis. Springer. 471-478. https://doi.org/10.1007/978-3-319-19390-8_53S471478Andrew, A.: Another efficient algorithm for convex hulls in two dimensions. Inf. Process. Lett. 9(5), 216–219 (1979)Bosch, V., Toselli, A.H., Vidal, E.: Statistical text line analysis in handwritten documents. In: Proceedings of ICFHR (2012)Eisenstein, J., Puerta, A.: Adaptation in automated user-interface design. In: Proceedings of International Conference on Intelligent User Interfaces (2000)Jelinek, F.: Statistical Methods for Speech Recognition. MIT Press, Cambridge (1998)Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans. ASME-J. Basic Eng. 82(Series D), 35–45 (1960)Keysers, D., Shafait, F., Breuel, T.M.: Document image zone classification - a simple high-performance approach. In: Proceedings of International Conference on Computer Vision Theory (2007)Kozielski, M., Forster, J., Ney, H.: Moment-based image normalization for handwritten text recognition. In: Proceedings of ICFHR (2012)Lampert, C.H., Braun, T., Ulges, A., Keysers, D., Breuel, T.M.: Oblivious document capture and real-time retrieval. In: International Workshop on Camera Based Document Analysis and Recognition (2005)Liang, J., Doermann, D., Li, H.: Camera based analysis of text and documents a survey. Int. J. Doc. Anal. Recogn. 7(2–3), 84–104 (2005)Liwicki, M., Rostanin, O., El-Neklawy, S.M., Dengel, A.: Touch & write: a multi-touch table with pen-input. In: Proceedings of International Workshop on Document Analysis Systems (2010)Marti, U.V., Bunke, H.: Text line segmentation and word recognition in a system for general writer independent handwriting recognition. In: Proceedings of ICDAR (2001)Martín-Albo, D., Romero, V., Toselli, A.H., Vidal, E.: Multimodal computer-assisted transcription of text images at character-level interaction. Int. J. Pattern Recogn. Artif. Intell. 26(5), 19 (2012)Martín-Albo, D., Romero, V., Vidal, E.: Interactive off-line handwritten text transcription using on-line handwritten text as feedback. In: Proceedings of ICDAR (2013)Mitra, S., Acharya, T.: Gesture recognition: a survey. IEEE Trans. Syst. Man Cybern. B Cybern. 37(3), 311–324 (2007)Terry, M., Mynatt, E.D.: Recognizing creative needs in user interface design. In: Proceedings of C&C (2002)Toselli, A.H., Juan, A., Keysers, D., González, J., Salvador, I., Ney, H., Vidal, E., Casacuberta, F.: Integrated handwriting recognition and interpretation using finite-state models. Int. J. Pattern Recognit. Artif. Intell. 18(4), 519–539 (2004)Toselli, A.H., Romero, V., Pastor, M., Vidal, E.: Multimodal interactive transcription of text images. Pattern Recognit. 43(5), 1814–1825 (2010)Toselli, A.H., Romero, V., Vidal, E.: Computer assisted transcription of text images and multimodal interaction. In: Popescu-Belis, A., Stiefelhagen, R. (eds.) MLMI 2008. LNCS, vol. 5237, pp. 296–308. Springer, Heidelberg (2008)Wachs, J.P., Kolsch, M., Stern, H., Edan, Y.: Vision-based hand-gesture applications. Commun. ACM. 54(2), 60–71 (2011)Wobbrock, J.O., Morris, M.R., Wilson, A.D.: User-defined gestures for surface computing. In: Proceedings of CHI (2009

    Handwritten and machine-printed text discrimination using a template matching approach

    Get PDF
    We propose a novel template matching approach for the discrimination of handwritten and machine-printed text. We first pre-process the scanned document images by performing denoising, circles/lines exclusion and word-block level segmentation. We then align and match characters in a flexible sized gallery with the segmented regions, using parallelised normalised cross-correlation. The experimental results over the Pattern Recognition & Image Analysis Research Lab-Natural History Museum (PRImA-NHM) dataset show remarkably high robustness of the algorithm in classifying cluttered, occluded and noisy samples, in addition to those with significant high missing data. The algorithm, which gives 84.0% classification rate with false positive rate 0.16 over the dataset, does not require training samples and generates compelling results as opposed to the training-based approaches, which have used the same benchmark
    corecore