4,649 research outputs found

    Rotation-invariant features for multi-oriented text detection in natural images.

    Get PDF
    Texts in natural scenes carry rich semantic information, which can be used to assist a wide range of applications, such as object recognition, image/video retrieval, mapping/navigation, and human computer interaction. However, most existing systems are designed to detect and recognize horizontal (or near-horizontal) texts. Due to the increasing popularity of mobile-computing devices and applications, detecting texts of varying orientations from natural images under less controlled conditions has become an important but challenging task. In this paper, we propose a new algorithm to detect texts of varying orientations. Our algorithm is based on a two-level classification scheme and two sets of features specially designed for capturing the intrinsic characteristics of texts. To better evaluate the proposed method and compare it with the competing algorithms, we generate a comprehensive dataset with various types of texts in diverse real-world scenes. We also propose a new evaluation protocol, which is more suitable for benchmarking algorithms for detecting texts in varying orientations. Experiments on benchmark datasets demonstrate that our system compares favorably with the state-of-the-art algorithms when handling horizontal texts and achieves significantly enhanced performance on variant texts in complex natural scenes

    FaceShop: Deep Sketch-based Face Image Editing

    Get PDF
    We present a novel system for sketch-based face image editing, enabling users to edit images intuitively by sketching a few strokes on a region of interest. Our interface features tools to express a desired image manipulation by providing both geometry and color constraints as user-drawn strokes. As an alternative to the direct user input, our proposed system naturally supports a copy-paste mode, which allows users to edit a given image region by using parts of another exemplar image without the need of hand-drawn sketching at all. The proposed interface runs in real-time and facilitates an interactive and iterative workflow to quickly express the intended edits. Our system is based on a novel sketch domain and a convolutional neural network trained end-to-end to automatically learn to render image regions corresponding to the input strokes. To achieve high quality and semantically consistent results we train our neural network on two simultaneous tasks, namely image completion and image translation. To the best of our knowledge, we are the first to combine these two tasks in a unified framework for interactive image editing. Our results show that the proposed sketch domain, network architecture, and training procedure generalize well to real user input and enable high quality synthesis results without additional post-processing.Comment: 13 pages, 20 figure

    TextureGAN: Controlling Deep Image Synthesis with Texture Patches

    Full text link
    In this paper, we investigate deep image synthesis guided by sketch, color, and texture. Previous image synthesis methods can be controlled by sketch and color strokes but we are the first to examine texture control. We allow a user to place a texture patch on a sketch at arbitrary locations and scales to control the desired output texture. Our generative network learns to synthesize objects consistent with these texture suggestions. To achieve this, we develop a local texture loss in addition to adversarial and content loss to train the generative network. We conduct experiments using sketches generated from real images and textures sampled from a separate texture database and results show that our proposed algorithm is able to generate plausible images that are faithful to user controls. Ablation studies show that our proposed pipeline can generate more realistic images than adapting existing methods directly.Comment: CVPR 2018 spotligh
    corecore