17,767 research outputs found

    Text analysis of user-generated contents for health-care applications: case study on smoking status classification

    Get PDF
    Text mining techniques have demonstrated a potential to unlock significant patient health information from unstructured text. However, most of the published work has been done using clinical reports, which are difficult to access due to patient confidentiality. In this paper, we present an investigation of text analysis for smoking status classification from User-Generated Contents (UGC), such as online forum discussions. UGC are more widely available, compared to clinical reports. Based on analyzing the properties of UGC, we propose the use of Linguistic Inquiry Word Count (LIWC) an approach being used for the first time for such a health-related task. We also explore various factors that affect the classification performance. The experimental results and evaluation indicate that the forum classification performs well with the proposed features. It has achieved an accuracy of up to 75% for smoking status prediction. Furthermore, the utilized features set is compact (88 features only) and independent of the dataset size

    Health systems data interoperability and implementation

    Get PDF
    Objective The objective of this study was to use machine learning and health standards to address the problem of clinical data interoperability across healthcare institutions. Addressing this problem has the potential to make clinical data comparable, searchable and exchangeable between healthcare providers. Data sources Structured and unstructured data has been used to conduct the experiments in this study. The data was collected from two disparate data sources namely MIMIC-III and NHanes. The MIMIC-III database stored data from two electronic health record systems which are CareVue and MetaVision. The data stored in these systems was not recorded with the same standards; therefore, it was not comparable because some values were conflicting, while one system would store an abbreviation of a clinical concept, the other would store the full concept name and some of the attributes contained missing information. These few issues that have been identified make this form of data a good candidate for this study. From the identified data sources, laboratory, physical examination, vital signs, and behavioural data were used for this study. Methods This research employed a CRISP-DM framework as a guideline for all the stages of data mining. Two sets of classification experiments were conducted, one for the classification of structured data, and the other for unstructured data. For the first experiment, Edit distance, TFIDF and JaroWinkler were used to calculate the similarity weights between two datasets, one coded with the LOINC terminology standard and another not coded. Similar sets of data were classified as matches while dissimilar sets were classified as non-matching. Then soundex indexing method was used to reduce the number of potential comparisons. Thereafter, three classification algorithms were trained and tested, and the performance of each was evaluated through the ROC curve. Alternatively the second experiment was aimed at extracting patient’s smoking status information from a clinical corpus. A sequence-oriented classification algorithm called CRF was used for learning related concepts from the given clinical corpus. Hence, word embedding, random indexing, and word shape features were used for understanding the meaning in the corpus. Results Having optimized all the model’s parameters through the v-fold cross validation on a sampled training set of structured data ( ), out of 24 features, only ( 8) were selected for a classification task. RapidMiner was used to train and test all the classification algorithms. On the final run of classification process, the last contenders were SVM and the decision tree classifier. SVM yielded an accuracy of 92.5% when the and parameters were set to and . These results were obtained after more relevant features were identified, having observed that the classifiers were biased on the initial data. On the other side, unstructured data was annotated via the UIMA Ruta scripting language, then trained through the CRFSuite which comes with the CLAMP toolkit. The CRF classifier obtained an F-measure of 94.8% for “nonsmoker” class, 83.0% for “currentsmoker”, and 65.7% for “pastsmoker”. It was observed that as more relevant data was added, the performance of the classifier improved. The results show that there is a need for the use of FHIR resources for exchanging clinical data between healthcare institutions. FHIR is free, it uses: profiles to extend coding standards; RESTFul API to exchange messages; and JSON, XML and turtle for representing messages. Data could be stored as JSON format on a NoSQL database such as CouchDB, which makes it available for further post extraction exploration. Conclusion This study has provided a method for learning a clinical coding standard by a computer algorithm, then applying that learned standard to unstandardized data so that unstandardized data could be easily exchangeable, comparable and searchable and ultimately achieve data interoperability. Even though this study was applied on a limited scale, in future, the study would explore the standardization of patient’s long-lived data from multiple sources using the SHARPn open-sourced tools and data scaling platformsInformation ScienceM. Sc. (Computing

    Addressing data accuracy and information integrity in mHealth using ML

    Full text link
    The aim of the study was finding a way in which Machine Learning can be applied in mHealth Solutions to detect inaccurate data that can potentially harm patients. The result was an algorithm that classified accurate and inaccurate data

    Retrieval of Radiology Reports Citing Critical Findings with Disease-Specific Customization

    Get PDF
    Background: Communication of critical results from diagnostic procedures between caregivers is a Joint Commission national patient safety goal. Evaluating critical result communication often requires manual analysis of voluminous data, especially when reviewing unstructured textual results of radiologic findings. Information retrieval (IR) tools can facilitate this process by enabling automated retrieval of radiology reports that cite critical imaging findings. However, IR tools that have been developed for one disease or imaging modality often need substantial reconfiguration before they can be utilized for another disease entity. Purpose: This paper: 1) describes the process of customizing two Natural Language Processing (NLP) and Information Retrieval/Extraction applications – an open-source toolkit, A Nearly New Information Extraction system (ANNIE); and an application developed in-house, Information for Searching Content with an Ontology-Utilizing Toolkit (iSCOUT) – to illustrate the varying levels of customization required for different disease entities and; 2) evaluates each application’s performance in identifying and retrieving radiology reports citing critical imaging findings for three distinct diseases, pulmonary nodule, pneumothorax, and pulmonary embolus. Results: Both applications can be utilized for retrieval. iSCOUT and ANNIE had precision values between 0.90-0.98 and recall values between 0.79 and 0.94. ANNIE had consistently higher precision but required more customization. Conclusion: Understanding the customizations involved in utilizing NLP applications for various diseases will enable users to select the most suitable tool for specific tasks

    M-health review: joining up healthcare in a wireless world

    Get PDF
    In recent years, there has been a huge increase in the use of information and communication technologies (ICT) to deliver health and social care. This trend is bound to continue as providers (whether public or private) strive to deliver better care to more people under conditions of severe budgetary constraint
    corecore