3,502 research outputs found

    Parallel 3-D marine controlled-source electromagnetic modelling using high-order tetrahedral Nédélec elements

    Get PDF
    We present a parallel and high-order Nédélec finite element solution for the marine controlled-source electromagnetic (CSEM) forward problem in 3-D media with isotropic conductivity. Our parallel Python code is implemented on unstructured tetrahedral meshes, which support multiple-scale structures and bathymetry for general marine 3-D CSEM modelling applications. Based on a primary/secondary field approach, we solve the diffusive form of Maxwell’s equations in the low-frequency domain. We investigate the accuracy and performance advantages of our new high-order algorithm against a low-order implementation proposed in our previous work. The numerical precision of our high-order method has been successfully verified by comparisons against previously published results that are relevant in terms of scale and geological properties. A convergence study confirms that high-order polynomials offer a better trade-off between accuracy and computation time. However, the optimum choice of the polynomial order depends on both the input model and the required accuracy as revealed by our tests. Also, we extend our adaptive-meshing strategy to high-order tetrahedral elements. Using adapted meshes to both physical parameters and high-order schemes, we are able to achieve a significant reduction in computational cost without sacrificing accuracy in the modelling. Furthermore, we demonstrate the excellent performance and quasi-linear scaling of our implementation in a state-of-the-art high-performance computing architecture.This project has received funding from the European Union's Horizon 2020 programme under the Marie Sklodowska-Curie grant agreement No. 777778. Furthermore, the research leading to these results has received funding from the European Union's Horizon 2020 programme under the ChEESE Project (https://cheese-coe.eu/ ), grant agreement No. 823844. In addition, the authors would also like to thank the support of the Ministerio de Educación y Ciencia (Spain) under Projects TEC2016-80386-P and TIN2016-80957-P. The authors would like to thank the Editors-in-Chief and to both reviewers, Dr. Martin Cuma and Dr. Raphael Rochlitz, for their valuable comments and suggestions which helped to improve the quality of the manuscript. This work benefited from the valuable suggestions, comments, and proofreading of Dr. Otilio Rojas (BSC). Last but not least, Octavio Castillo-Reyes thanks Natalia Gutierrez (BSC) for her support in CSEM modeling with BSIT.Peer ReviewedPostprint (author's final draft

    JIGSAW-GEO (1.0): locally orthogonal staggered unstructured grid generation for general circulation modelling on the sphere

    Full text link
    An algorithm for the generation of non-uniform, locally-orthogonal staggered unstructured spheroidal grids is described. This technique is designed to generate very high-quality staggered Voronoi/Delaunay meshes appropriate for general circulation modelling on the sphere, including applications to atmospheric simulation, ocean-modelling and numerical weather prediction. Using a recently developed Frontal-Delaunay refinement technique, a method for the construction of high-quality unstructured spheroidal Delaunay triangulations is introduced. A locally-orthogonal polygonal grid, derived from the associated Voronoi diagram, is computed as the staggered dual. It is shown that use of the Frontal-Delaunay refinement technique allows for the generation of very high-quality unstructured triangulations, satisfying a-priori bounds on element size and shape. Grid-quality is further improved through the application of hill-climbing type optimisation techniques. Overall, the algorithm is shown to produce grids with very high element quality and smooth grading characteristics, while imposing relatively low computational expense. A selection of uniform and non-uniform spheroidal grids appropriate for high-resolution, multi-scale general circulation modelling are presented. These grids are shown to satisfy the geometric constraints associated with contemporary unstructured C-grid type finite-volume models, including the Model for Prediction Across Scales (MPAS-O). The use of user-defined mesh-spacing functions to generate smoothly graded, non-uniform grids for multi-resolution type studies is discussed in detail.Comment: Final revisions, as per: Engwirda, D.: JIGSAW-GEO (1.0): locally orthogonal staggered unstructured grid generation for general circulation modelling on the sphere, Geosci. Model Dev., 10, 2117-2140, https://doi.org/10.5194/gmd-10-2117-2017, 201

    An adaptive fixed-mesh ALE method for free surface flows

    Get PDF
    In this work we present a Fixed-Mesh ALE method for the numerical simulation of free surface flows capable of using an adaptive finite element mesh covering a background domain. This mesh is successively refined and unrefined at each time step in order to focus the computational effort on the spatial regions where it is required. Some of the main ingredients of the formulation are the use of an Arbitrary-Lagrangian–Eulerian formulation for computing temporal derivatives, the use of stabilization terms for stabilizing convection, stabilizing the lack of compatibility between velocity and pressure interpolation spaces, and stabilizing the ill-conditioning introduced by the cuts on the background finite element mesh, and the coupling of the algorithm with an adaptive mesh refinement procedure suitable for running on distributed memory environments. Algorithmic steps for the projection between meshes are presented together with the algebraic fractional step approach used for improving the condition number of the linear systems to be solved. The method is tested in several numerical examples. The expected convergence rates both in space and time are observed. Smooth solution fields for both velocity and pressure are obtained (as a result of the contribution of the stabilization terms). Finally, a good agreement between the numerical results and the reference experimental data is obtained.Postprint (published version

    Refficientlib: an efficient load-rebalanced adaptive mesh refinement algorithm for high-performance computational physics meshes

    Get PDF
    No separate or additional fees are collected for access to or distribution of the work.In this paper we present a novel algorithm for adaptive mesh refinement in computational physics meshes in a distributed memory parallel setting. The proposed method is developed for nodally based parallel domain partitions where the nodes of the mesh belong to a single processor, whereas the elements can belong to multiple processors. Some of the main features of the algorithm presented in this paper are its capability of handling multiple types of elements in two and three dimensions (triangular, quadrilateral, tetrahedral, and hexahedral), the small amount of memory required per processor, and the parallel scalability up to thousands of processors. The presented algorithm is also capable of dealing with nonbalanced hierarchical refinement, where multirefinement level jumps are possible between neighbor elements. An algorithm for dealing with load rebalancing is also presented, which allows us to move the hierarchical data structure between processors so that load unbalancing is kept below an acceptable level at all times during the simulation. A particular feature of the proposed algorithm is that arbitrary renumbering algorithms can be used in the load rebalancing step, including both graph partitioning and space-filling renumbering algorithms. The presented algorithm is packed in the Fortran 2003 object oriented library \textttRefficientLib, whose interface calls which allow it to be used from any computational physics code are summarized. Finally, numerical experiments illustrating the performance and scalability of the algorithm are presented.Peer ReviewedPostprint (published version

    Real-time Error Control for Surgical Simulation

    Get PDF
    Objective: To present the first real-time a posteriori error-driven adaptive finite element approach for real-time simulation and to demonstrate the method on a needle insertion problem. Methods: We use corotational elasticity and a frictional needle/tissue interaction model. The problem is solved using finite elements within SOFA. The refinement strategy relies upon a hexahedron-based finite element method, combined with a posteriori error estimation driven local hh-refinement, for simulating soft tissue deformation. Results: We control the local and global error level in the mechanical fields (e.g. displacement or stresses) during the simulation. We show the convergence of the algorithm on academic examples, and demonstrate its practical usability on a percutaneous procedure involving needle insertion in a liver. For the latter case, we compare the force displacement curves obtained from the proposed adaptive algorithm with that obtained from a uniform refinement approach. Conclusions: Error control guarantees that a tolerable error level is not exceeded during the simulations. Local mesh refinement accelerates simulations. Significance: Our work provides a first step to discriminate between discretization error and modeling error by providing a robust quantification of discretization error during simulations.Comment: 12 pages, 16 figures, change of the title, submitted to IEEE TBM

    Enabling technology for non-rigid registration during image-guided neurosurgery

    Get PDF
    In the context of image processing, non-rigid registration is an operation that attempts to align two or more images using spatially varying transformations. Non-rigid registration finds application in medical image processing to account for the deformations in the soft tissues of the imaged organs. During image-guided neurosurgery, non-rigid registration has the potential to assist in locating critical brain structures and improve identification of the tumor boundary. Robust non-rigid registration methods combine estimation of tissue displacement based on image intensities with the spatial regularization using biomechanical models of brain deformation. In practice, the use of such registration methods during neurosurgery is complicated by a number of issues: construction of the biomechanical model used in the registration from the image data, high computational demands of the application, and difficulties in assessing the registration results. In this dissertation we develop methods and tools that address some of these challenges, and provide components essential for the intra-operative application of a previously validated physics-based non-rigid registration method.;First, we study the problem of image-to-mesh conversion, which is required for constructing biomechanical model of the brain used during registration. We develop and analyze a number of methods suitable for solving this problem, and evaluate them using application-specific quantitative metrics. Second, we develop a high-performance implementation of the non-rigid registration algorithm and study the use of geographically distributed Grid resources for speculative registration computations. Using the high-performance implementation running on the remote computing resources we are able to deliver the results of registration within the time constraints of the neurosurgery. Finally, we present a method that estimates local alignment error between the two images of the same subject. We assess the utility of this method using multiple sources of ground truth to evaluate its potential to support speculative computations of non-rigid registration

    Soft volume simulation using a deformable surface model

    Get PDF
    The aim of the research is to contribute to the modelling of deformable objects, such as soft tissues in medical simulation. Interactive simulation for medical training is a concept undergoing rapid growth as the underlying technologies support the increasingly more realstic and functional training environments. The prominent issues in the deployment of such environments centre on a fine balance between the accuracy of the deformable model and real-time interactivity. Acknowledging the importance of interacting with non-rigid materials such as the palpation of a breast for breast assessment, this thesis has explored the physics-based modelling techniques for both volume and surface approach. This thesis identified that the surface approach based on the mass spring system (MSS) has the benefits of rapid prototyping, reduced mesh complexity, computational efficiency and the support for large material deformation compared to the continuum approach. However, accuracy relative to real material properties is often over looked in the configuration of the resulting model. This thesis has investigated the potential and the feasibility of surface modelling for simulating soft objects regardless of the design of the mesh topology and the non-existence of internal volume discretisation. The assumptions of the material parameters such as elasticity, homogeneity and incompressibility allow a reduced set of material values to be implemented in order to establish the association with the surface configuration. A framework for a deformable surface model was generated in accordance with the issues of the estimation of properties and volume behaviour corresponding to the material parameters. The novel extension to the surface MSS enables the tensile properties of the material to be integrated into an enhanced configuration despite its lack of volume information. The benefits of the reduced complexity of a surface model are now correlated with the improved accuracy in the estimation of properties and volume behaviour. Despite the irregularity of the underlying mesh topology and the absence of volume, the model reflected the original material values and preserved volume with minimal deviations. Global deformation effect which is essential to emulate the run time behaviour of a real soft material upon interaction, such as the palpation of a generic breast, was also demonstrated, thus indicating the potential of this novel technique in the application of soft tissue simulation
    corecore