950 research outputs found

    Generating Log-normal Mock Catalog of Galaxies in Redshift Space

    Full text link
    We present a public code to generate a mock galaxy catalog in redshift space assuming a log-normal probability density function (PDF) of galaxy and matter density fields. We draw galaxies by Poisson-sampling the log-normal field, and calculate the velocity field from the linearised continuity equation of matter fields, assuming zero vorticity. This procedure yields a PDF of the pairwise velocity fields that is qualitatively similar to that of N-body simulations. We check fidelity of the catalog, showing that the measured two-point correlation function and power spectrum in real space agree with the input precisely. We find that a linear bias relation in the power spectrum does not guarantee a linear bias relation in the density contrasts, leading to a cross-correlation coefficient of matter and galaxies deviating from unity on small scales. We also find that linearising the Jacobian of the real-to-redshift space mapping provides a poor model for the two-point statistics in redshift space. That is, non-linear redshift-space distortion is dominated by non-linearity in the Jacobian. The power spectrum in redshift space shows a damping on small scales that is qualitatively similar to that of the well-known Fingers-of-God (FoG) effect due to random velocities, except that the log-normal mock does not include random velocities. This damping is a consequence of non-linearity in the Jacobian, and thus attributing the damping of the power spectrum solely to FoG, as commonly done in the literature, is misleading.Comment: 38 pages, 16 figures, code publicly available as "lognormal_galaxies" at http://wwwmpa.mpa-garching.mpg.de/~komatsu/codes.html Matches published version : added figures and explanatory comment

    Sparse component separation for accurate CMB map estimation

    Get PDF
    The Cosmological Microwave Background (CMB) is of premier importance for the cosmologists to study the birth of our universe. Unfortunately, most CMB experiments such as COBE, WMAP or Planck do not provide a direct measure of the cosmological signal; CMB is mixed up with galactic foregrounds and point sources. For the sake of scientific exploitation, measuring the CMB requires extracting several different astrophysical components (CMB, Sunyaev-Zel'dovich clusters, galactic dust) form multi-wavelength observations. Mathematically speaking, the problem of disentangling the CMB map from the galactic foregrounds amounts to a component or source separation problem. In the field of CMB studies, a very large range of source separation methods have been applied which all differ from each other in the way they model the data and the criteria they rely on to separate components. Two main difficulties are i) the instrument's beam varies across frequencies and ii) the emission laws of most astrophysical components vary across pixels. This paper aims at introducing a very accurate modeling of CMB data, based on sparsity, accounting for beams variability across frequencies as well as spatial variations of the components' spectral characteristics. Based on this new sparse modeling of the data, a sparsity-based component separation method coined Local-Generalized Morphological Component Analysis (L-GMCA) is described. Extensive numerical experiments have been carried out with simulated Planck data. These experiments show the high efficiency of the proposed component separation methods to estimate a clean CMB map with a very low foreground contamination, which makes L-GMCA of prime interest for CMB studies.Comment: submitted to A&

    Higher order moments of the density field in a parameterized sequence of non-gaussian theories

    Get PDF
    We calculate the higher order moments in a sequence of models where the initial density fluctuations are drawn from a chi^2_nu distribution with a power-law power spectrum. For large values of nu the distribution is approximately gaussian, and we reproduce the values known from perturbation theory. As \nu is lowered the distribution becomes progressively more non-gaussian, approximating models with rare, high-amplitude peaks. The limit nu=1 is a realization of recently proposed isocurvature models for producing early galaxy formation where the density perturbations are quadratic in a gaussian field.Comment: 7 pages, 7 figures, to appear in MNRA

    The mass density field in simulated non-Gaussian scenarios

    Full text link
    In this work we study the properties of the mass density field in the non-Gaussian world models simulated by Grossi et al. 2007. In particular we focus on the one-point density probability distribution function of the mass density field in non-Gausian models with quadratic non-linearities quantified by the usual parameter f_NL. We find that the imprints of primordial non-Gaussianity are well preserved in the negative tail of the probability function during the evolution of the density perturbation. The effect is already noticeable at redshifts as large as 4 and can be detected out to the present epoch. At z=0 we find that the fraction of the volume occupied by regions with underdensity delta < -0.9, typical of voids, is about 1.3 per cent in the Gaussian case and increases to ~2.2 per cent if f_NL=-1000 while decreases to ~0.5 per cent if f_NL=+1000. This result suggests that void-based statistics may provide a powerful method to detect non-Gaussianity even at low redshifts which is complementary to the measurements of the higher-order moments of the probability distribution function like the skewness or the kurtosis for which deviations from the Gaussian case are detected at the 25-50 per cent level.Comment: revised version, 9 Pages, 8 figures, MNRAS in pres

    Non-Gaussianity from Inflation: Theory and Observations

    Get PDF
    This is a review of models of inflation and of their predictions for the primordial non-Gaussianity in the density perturbations which are thought to be at the origin of structures in the Universe. Non-Gaussianity emerges as a key observable to discriminate among competing scenarios for the generation of cosmological perturbations and is one of the primary targets of present and future Cosmic Microwave Background satellite missions. We give a detailed presentation of the state-of-the-art of the subject of non-Gaussianity, both from the theoretical and the observational point of view, and provide all the tools necessary to compute at second order in perturbation theory the level of non-Gaussianity in any model of cosmological perturbations. We discuss the new wave of models of inflation, which are firmly rooted in modern particle physics theory and predict a significant amount of non-Gaussianity. The review is addressed to both astrophysicists and particle physicists and contains useful tables which summarize the theoretical and observational results regarding non-Gaussianity.Comment: LaTeX file: 218 pages, 19 figures. Replaced to match the accepted version in Physics Reports. A high-resolution version of Fig. 2 can be downloaded from: http://www.pd.infn.it/~liguori/Non_Gaussianity
    • …
    corecore