159,640 research outputs found

    Tests for Establishing Security Properties

    Get PDF
    Ensuring strong security properties in some cases requires participants to carry out tests during the execution of a protocol. A classical example is electronic voting: participants are required to verify the presence of their ballots on a bulletin board, and to verify the computation of the election outcome. The notion of certificate transparency is another example, in which participants in the protocol are required to perform tests to verify the integrity of a certificate log. We present a framework for modelling systems with such `testable properties', using the applied pi calculus. We model the tests that are made by participants in order to obtain the security properties. Underlying our work is an attacker model called ``malicious but cautious'', which lies in between the Dolev-Yao model and the ``honest but curious'' model. The malicious-but-cautious model is appropriate for cloud computing providers that are potentially malicious but are assumed to be cautious about launching attacks that might cause user tests to fail

    Formal security analysis of registration protocols for interactive systems: a methodology and a case of study

    Full text link
    In this work we present and formally analyze CHAT-SRP (CHAos based Tickets-Secure Registration Protocol), a protocol to provide interactive and collaborative platforms with a cryptographically robust solution to classical security issues. Namely, we focus on the secrecy and authenticity properties while keeping a high usability. In this sense, users are forced to blindly trust the system administrators and developers. Moreover, as far as we know, the use of formal methodologies for the verification of security properties of communication protocols isn't yet a common practice. We propose here a methodology to fill this gap, i.e., to analyse both the security of the proposed protocol and the pertinence of the underlying premises. In this concern, we propose the definition and formal evaluation of a protocol for the distribution of digital identities. Once distributed, these identities can be used to verify integrity and source of information. We base our security analysis on tools for automatic verification of security protocols widely accepted by the scientific community, and on the principles they are based upon. In addition, it is assumed perfect cryptographic primitives in order to focus the analysis on the exchange of protocol messages. The main property of our protocol is the incorporation of tickets, created using digests of chaos based nonces (numbers used only once) and users' personal data. Combined with a multichannel authentication scheme with some previous knowledge, these tickets provide security during the whole protocol by univocally linking each registering user with a single request. [..]Comment: 32 pages, 7 figures, 8 listings, 1 tabl

    DTKI: a new formalized PKI with no trusted parties

    Get PDF
    The security of public key validation protocols for web-based applications has recently attracted attention because of weaknesses in the certificate authority model, and consequent attacks. Recent proposals using public logs have succeeded in making certificate management more transparent and verifiable. However, those proposals involve a fixed set of authorities. This means an oligopoly is created. Another problem with current log-based system is their heavy reliance on trusted parties that monitor the logs. We propose a distributed transparent key infrastructure (DTKI), which greatly reduces the oligopoly of service providers and allows verification of the behaviour of trusted parties. In addition, this paper formalises the public log data structure and provides a formal analysis of the security that DTKI guarantees.Comment: 19 page

    The Role of Evidence in Establishing Trust in Repositories

    Get PDF
    This article arises from work by the Digital Curation Centre (DCC) Working Group examining mechanisms to roll out audit and certification services for digital repositories in the United Kingdom. Our attempt to develop a program for applying audit and certification processes and tools took as its starting point the RLG-NARA Audit Checklist for Certifying Digital Repositories. Our intention was to appraise critically the checklist and conceive a means of applying its mechanics within a diverse range of repository environments. We were struck by the realization that while a great deal of effort has been invested in determining the characteristics of a 'trusted digital repository', far less effort has concentrated on the ways in which the presence of the attributes can be demonstrated and their qualities measured. With this in mind we sought to explore the role of evidence within the certification process, and to identify examples of the types of evidence (e.g., documentary, observational, and testimonial) that might be desirable during the course of a repository audit.

    Peer-to-Peer Communication Across Network Address Translators

    Full text link
    Network Address Translation (NAT) causes well-known difficulties for peer-to-peer (P2P) communication, since the peers involved may not be reachable at any globally valid IP address. Several NAT traversal techniques are known, but their documentation is slim, and data about their robustness or relative merits is slimmer. This paper documents and analyzes one of the simplest but most robust and practical NAT traversal techniques, commonly known as "hole punching." Hole punching is moderately well-understood for UDP communication, but we show how it can be reliably used to set up peer-to-peer TCP streams as well. After gathering data on the reliability of this technique on a wide variety of deployed NATs, we find that about 82% of the NATs tested support hole punching for UDP, and about 64% support hole punching for TCP streams. As NAT vendors become increasingly conscious of the needs of important P2P applications such as Voice over IP and online gaming protocols, support for hole punching is likely to increase in the future.Comment: 8 figures, 1 tabl

    Quantitative analysis of the leakage of confidential data

    Get PDF
    Basic information theory is used to analyse the amount of confidential information which may be leaked by programs written in a very simple imperative language. In particular, a detailed analysis is given of the possible leakage due to equality tests and if statements. The analysis is presented as a set of syntax-directed inference rules and can readily be automated
    • 

    corecore