248 research outputs found

    Bridging the divide in language and approach between pedagogy and programming: the case of IMS Learning Design

    Get PDF
    Even though the IMS Learning Design (IMS LD) specification has offered a way for expressing multiple-learner scenarios, the language thus provided is far from the language, teaching practitioners use. To bridge this divide, we have developed IMS LD authoring software that translates from the learning designer perspective to the technical perspective. To aid adequate software developments, an analysis was performed to identify uses of level B properties in expert units of learning. In a second analysis, which is described in this paper, these uses were matched with demands of typical pedagogical methods. Some restrictions of the IMS LD specification are pointed out in this regard. As an outcome of the analyses, interfaces employing pedagogical language were integrated in the IMS LD authoring software in order to provide teaching practitioners access to level B functionalities despite their highly technical nature

    Representing the learning design of units of learning

    Get PDF
    In order to capture current educational practices in eLearning courses, more advanced learning design capabilities are needed than are provided by the open eLearning specifications hitherto available. Specifically, these fall short in terms of multi-role workflows, collaborative peer-interaction, personalization and support for learning services. We present a new specification that both extends and integrates current specifications to support the portable representation of units of learning (e.g. lessons, learning events) that have advanced learning designs. This is the Learning Design specification. It enables the creation of a complete, abstract and portable description of the pedagogical approach taken in a course, which can then be realized by a conforming system. It can model multi-role teaching-learning processes and supports personalization of learning routes. The underlying generic pedagogical modelling language has been translated into a specification (a standard developed and agreed upon by domain and industry experts) that was developed in the context of IMS, one of the major bodies involved in the development of interoperability specifications in the field of eLearning. The IMS Learning Design specification is discussed in this article in the context of its current status, its limitations and its future development

    A model-driven development approach for learning design using the LPCEL Editor

    Get PDF
    Complex learning scenarios are represented using Educational Modeling Languages (EMLs). Different people with specific skills usually design these scenarios. The IMS LD is a commonly used EML for which some visual editors are being created in order to assist the authoring process. However, these editors have a limited level of expressiveness and do not provide the facilities for designers to collaborate in the design process. The LPCEL Editor provides a broad level of expressiveness and facilitates the authoring process with an editor that includes: (1) Visual Elements, (2) Intermediate Representation, (3) Learning Patterns, (4) Collaboration tools and (5) Web Services. In order to verify that the components are sufficient, we conducted a user evaluation to analyze their perspective regarding the level of functionality of the tools

    On the automatic compilation of e-learning models to planning

    Full text link
    [EN] This paper presents a general approach to automatically compile e-learning models to planning, allowing us to easily generate plans, in the form of learning designs, by using existing domain-independent planners. The idea is to compile, first, a course defined in a standard e-learning language into a planning domain, and, second, a file containing students learning information into a planning problem. We provide a common compilation and extend it to three particular approaches that cover a full spectrum of planning paradigms, which increases the possibilities of using current planners: (i) hierarchical, (ii) including PDDL (Planning Domain Definition Language) actions with conditional effects and (iii) including PDDL durative actions. The learning designs are automatically generated from the plans and can be uploaded, and subsequently executed, by learning management platforms. We also provide an extensive analysis of the e-learning metadata specification required for planning, and the pros and cons on the knowledge engineering procedures used in each of the three compilations. Finally, we include some qualitative and quantitative experimentation of the compilations in several domain-independent planners to measure its scalability and applicability.This work has been supported by the Spanish MICINN under projects TIN2008-06701-C03 and Consolider Ingenio 2010 CSD2007-00022, by the Mexican National Council of Science and Technology and the regional projects CCG08-UC3M/TIC-4141 and Prometeo GVA 2008/051.Garrido Tejero, A.; Fernandez, S.; Onaindia De La Rivaherrera, E.; Morales, L.; Borrajo, D.; Castillo, L. (2013). On the automatic compilation of e-learning models to planning. Knowledge Engineering Review. 28(2):121-136. https://doi.org/10.1017/S0269888912000380S121136282Garrido A. , Onaindía E. 2010. On the application of planning and scheduling techniques to E-learning. In Proceedings of the 23rd International Conference on Industrial, Engineering & Other Applications of Applied Intelligent Systems (IEA-AIE 2010)—Lecture Notes in Computer Science 6096, 244–253. Springer.Ullrich C 2008. Pedagogically founded courseware generation for web-based learning, No. 5260, Lecture Notes in Artificial Intelligence 5260, Springer.Sicilia M.A. , Sánchez-Alonso S. , García-Barriocanal E. 2006. On supporting the process of learning design through planners. CEUR Workshop Proceedings: Virtual Campus 2006 Post-Proceedings. Barcelona, Spain, 186(1), 81–89.IMSLD 2003. IMS Learning Design Specification. Version 1.0 (February, 2003). Retrieved December, 2012, from http://www.imsglobal.org/learningdesign.Sharable Content Object Reference Model (SCORM) 2004. Retrieved December, 2012, from http://scorm.com.Garrido A. , Onaindia E. , Morales L. , Castillo L. , Fernandez S. , Borrajo D. 2009. Modeling E-learning activities in automated planning. In Proceedings of the 3rd International Competition on Knowledge Engineering for Planning and Scheduling (ICKEPS-2009), Thessaloniki, Greece, 18–27.Essalmi, F., Ayed, L. J. B., Jemni, M., Kinshuk, & Graf, S. (2010). A fully personalization strategy of E-learning scenarios. Computers in Human Behavior, 26(4), 581-591. doi:10.1016/j.chb.2009.12.010Camacho D. , R-Moreno M.D. , Obieta U. 2007. CAMOU: a simple integrated e-learning and planning techniques tool. In 4th International Workshop on Constraints and Language Processing, Roskilde University, Denmark, 1–11.Fox, M., & Long, D. (2003). PDDL2.1: An Extension to PDDL for Expressing Temporal Planning Domains. Journal of Artificial Intelligence Research, 20, 61-124. doi:10.1613/jair.1129KONTOPOULOS, E., VRAKAS, D., KOKKORAS, F., BASSILIADES, N., & VLAHAVAS, I. (2008). An ontology-based planning system for e-course generation. Expert Systems with Applications, 35(1-2), 398-406. doi:10.1016/j.eswa.2007.07.034Fuentetaja R. , Borrajo D. , Linares López C. 2009. A look-ahead B&B search for cost-based planning. In Proceedings of CAEPIA'09, Murcia, Spain, 105–114.Limongelli C. , Sciarrone F. , Vaste G. 2008. LS-plan: an effective combination of dynamic courseware generation and learning styles in web-based education. In Adaptive Hypermedia and Adaptive Web-Based Systems, 5th International Conference, AH 2008, Nejdl, W., Kay, J., Pu, P. & Herder, E. (eds.)., 133–142. Springer.Castillo L. , Fdez.-Olivares J. , García-Perez O. Palao F. 2006. Efficiently handling temporal knowledge in an HTN planner. In Proceedings of 16th International Conference on Automated Planning and Scheduling (ICAPS 2006), Borrajo, D. & McCluskey, L. (eds.). AAAI, 63–72.Castillo, L., Morales, L., González-Ferrer, A., Fdez-Olivares, J., Borrajo, D., & Onaindía, E. (2009). Automatic generation of temporal planning domains for e-learning problems. Journal of Scheduling, 13(4), 347-362. doi:10.1007/s10951-009-0140-xUllrich, C., & Melis, E. (2009). Pedagogically founded courseware generation based on HTN-planning. Expert Systems with Applications, 36(5), 9319-9332. doi:10.1016/j.eswa.2008.12.043Boticario J. , Santos O. 2007. A dynamic assistance approach to support the development and modelling of adaptive learning scenarion based on educational standards. In Proceedings of Workshop on Authoring of Adaptive and Adaptable Hypermedia, International Conference on User Modelling, Corfu, Greece, 1–8.IMSMD 2003. IMS Learning Resource Meta-data Specification. Version 1.3 (August, 2006). Retrieved December, 2012, from http://www.imsglobal.org/metadata.Mohan P. , Greer J. , McCalla G. 2003. Instructional planning with learning objects. In IJCAI-03 Workshop Knowledge Representation and Automated Reasoning for E-Learning Systems, Acapulco, Mexico, 52–58.Alonso C. , Honey P. 2002. Honey-alonso Learning Style Theoretical Basis (in Spanish). Retrieved December 2012, from http://www.estilosdeaprendizaje.es/menuprinc2.htm

    Cognitive Effectiveness of Visual Instructional Design Languages

    Get PDF
    The introduction of learning technologies into education is making the design of courses and instructional materials an increasingly complex task. Instructional design languages are identified as conceptual tools for achieving more standardized and, at the same time, more creative design solutions, as well as enhancing communication and transparency in the design process. In this article we discuss differences in cognitive aspects of three visual instructional design languages (E²ML, PoEML, coUML), based on user evaluation. Cognitive aspects are of relevance for learning a design language, creating models with it, and understanding models created using it. The findings should enable language constructors to improve the usability of visual instructional design languages in the future. The paper concludes with directions with regard to how future research on visual instructional design languages could strengthen their value and enhance their actual use by educators and designers by synthesizing existing efforts into a unified modeling approach for VIDLs

    The Larnaca declaration on learning design

    Get PDF
    Education faces many challenges in the changing modern world. Learners are changing in their approaches to education – they use digital technologies, they multi-task, they collaborate and they are becoming less patient with teacher-centric styles of education. Educators face many changes – such as expectations of adopting innovative teaching approaches, alignment of teaching to external standards, growing requirements for professional development and difficulties in balancing a complex range of demands from different stakeholders. Government and educational institutions also face many changes, such as the rise of the knowledge economy and the need for different kinds of graduates, a shift from knowledge scarcity to abundance, and the impact of technology – especially the internet via open sharing of educational resources and massive open online courses (MOOCs). In the context of these changes, effective teaching and learning in the classroom (and beyond) remains central. How can educators become more effective in their preparation and facilitation of teaching and learning activities? How can educators be exposed to new teaching ideas that take them beyond their traditional approaches? How can technology assist educators without undermining them? How can learners be better prepared for the world that awaits them? This paper describes how the new field of Learning Design contributes to the central challenge of improving teaching and learning. Learning Design can assist educators to describe effective teaching ideas so that they can be shared with, and adapted by, other educators. While the field has primarily focussed on higher education and K-12 schools to date, it also has implications for vocational and professional training. This paper describes how ongoing work to develop a descriptive language for teaching and learning activities (often including the use of technology) is changing the way educators think about planning and facilitating educational activities. The ultimate goal of Learning Design is to convey great teaching ideas among educators in order to improve student learning. The paper begins with this Introduction, followed by an analogy from music to provide a context for Part 1, which considers the possibility of educational notation. Part 2 describes how this possibility is being realised in the field of Learning Design, illustrated with an example based on a Role Play. Part 3 considers current definitional challenges in Learning Design and its provocative aspiration towards pedagogical neutrality. Part 4 provides a wider conceptual map of education for exploring the place of Learning Design, including more examples of current Learning Design approaches, and how the map can be used to analyse pedagogical theories. Part 5 returns to the relationship between Learning Design and pedagogical theories, and the central question of effective teaching and learning approaches. The Conclusion offers a new synthesis of the ideas discussed in this paper as a foundation for the future of Learning Design, and the Epilogue returns to the music analogy to reflect on the future prospects of this synthesis. While the concepts discussed in this paper have potentially far-reaching implications for many aspects of education, this paper is written primarily for those with an interest in Learning Design and in pedagogical theories. Future work based on this paper will explore these ideas in different ways for other audiences, such as policy makers and typical educators

    Supporting the non-expert in the authoring of personalized learning using IMS LD

    Get PDF
    Sodhi, T., Miao, Y., Brouns, F., & Koper, R. (2007). Supporting the non-expert in the authoring of personalized learning using IMS LD. Proceedings of the ePortfolio 2007 Conference. October, 18-19, 2007, Maastricht, The Netherlands. [See also http://hdl.handle.net/1820/1680 ]This paper presents an alternate classification of the approaches employed in today’s IMS LD authoring tools to support the engagement of non-experts in the design of instruction for today’s e-learning. The classification is based on how the authors can approach the design task and the support that is afforded to them by the authoring tool. The paper presents the case for an approach based on educational scenario-based modelling, as best suitable to actualize a higher level of involvement on the part of the non-expert authors in the creation of personalized learning based on portfolios, and learner information. Additionally, based on the classifications, the paper proposes a set of features based on which today’s crop of IMS LD tools can be classified, and a new generation of tools to support the non-expert authors can be modelled.The work on this publication has been sponsored by the TENCompetence Integrated Project that is funded by the European Commission's 6th Framework Programme, priority IST/Technology Enhanced Learning. Contract 027087 [http://www.tencompetence.org
    • …
    corecore