952 research outputs found

    Slow cortical potential neurofeedback in attention deficit hyperactivity disorder: is there neurophysiological evidence for specific effects?

    Get PDF
    This study compared changes in quantitative EEG (QEEG) and CNV (contingent negative variation) of children suffering from ADHD treated by SCP (slow cortical potential) neurofeedback (NF) with the effects of group therapy (GT) to separate specific from non-specific neurophysiological effects of NF. Twenty-six children (age: 11.1±1.15years) diagnosed as having ADHD were assigned to NF (N=14) or GT (N=12) training groups. QEEG measures at rest, CNV and behavioral ratings were acquired before and after the trainings and statistically analyzed. For children with ADHD-combined type in the NF group, treatment effects indicated a tendency toward improvement of selected QEEG markers. We could not find the expected improvement of CNV, but CNV reduction was less pronounced in good NF performers. QEEG changes were associated with some behavioral scales. Analyses of subgroups suggested specific influences of SCP training on brain functions. To conclude, SCP neurofeedback improves only selected attentional brain functions as measurable with QEEG at rest or CNV mapping. Effects of neurofeedback including the advantage of NF over GT seem mediated by both specific and non-specific factor

    1Controlled evaluation of a neurofeedback training of slow cortical potentials in children with Attention Deficit/Hyperactivity Disorder (ADHD)

    Get PDF
    BACKGROUND: Although several promising studies on neurofeedback training in Attention Deficit/Hyperactivity Disorder (ADHD) have been performed in recent years, the specificity of positive treatment effects continues to be challenged. METHODS: To evaluate the specificity of a neurofeedback training of slow cortical potentials, a twofold strategy was pursued: First, the efficacy of neurofeedback training was compared to a group training program for children with ADHD. Secondly, the extent of improvements observed in the neurofeedback group in relation to successful regulation of cortical activation was examined. Parents and teachers rated children's behaviour and executive functions before and after treatment. In addition, children underwent neuropsychological testing before and after training. RESULTS: According to parents' and teachers' ratings, children of the neurofeedback training group improved more than children who had participated in a group therapy program, particularly in attention and cognition related domains. On neuropsychological measures children of both groups showed similar improvements. However, only about half of the neurofeedback group learned to regulate cortical activation during a transfer condition without direct feedback. Behavioural improvements of this subgroup were moderately related to neurofeedback training performance, whereas effective parental support accounted better for some advantages of neurofeedback training compared to group therapy according to parents' and teachers' ratings. CONCLUSION: There is a specific training effect of neurofeedback of slow cortical potentials due to enhanced cortical control. However, non-specific factors, such as parental support, may also contribute to the positive behavioural effects induced by the neurofeedback training

    Correlation between amygdala BOLD activity and frontal EEG asymmetry during real-time fMRI neurofeedback training in patients with depression

    Get PDF
    Real-time fMRI neurofeedback (rtfMRI-nf) is an emerging approach for studies and novel treatments of major depressive disorder (MDD). EEG performed simultaneously with an rtfMRI-nf procedure allows an independent evaluation of rtfMRI-nf brain modulation effects. Frontal EEG asymmetry in the alpha band is a widely used measure of emotion and motivation that shows profound changes in depression. However, it has never been directly related to simultaneously acquired fMRI data. We report the first study investigating electrophysiological correlates of the rtfMRI-nf procedure, by combining rtfMRI-nf with simultaneous and passive EEG recordings. In this pilot study, MDD patients in the experimental group (n=13) learned to upregulate BOLD activity of the left amygdala using an rtfMRI-nf during a happy emotion induction task. MDD patients in the control group (n=11) were provided with a sham rtfMRI-nf. Correlations between frontal EEG asymmetry in the upper alpha band and BOLD activity across the brain were examined. Average individual changes in frontal EEG asymmetry during the rtfMRI-nf task for the experimental group showed a significant positive correlation with the MDD patients' depression severity ratings, consistent with an inverse correlation between the depression severity and frontal EEG asymmetry at rest. Temporal correlations between frontal EEG asymmetry and BOLD activity were significantly enhanced, during the rtfMRI-nf task, for the amygdala and many regions associated with emotion regulation. Our findings demonstrate an important link between amygdala BOLD activity and frontal EEG asymmetry. Our EEG asymmetry results suggest that the rtfMRI-nf training targeting the amygdala is beneficial to MDD patients, and that alpha-asymmetry EEG-nf would be compatible with the amygdala rtfMRI-nf. Combination of the two could enhance emotion regulation training and benefit MDD patients.Comment: 28 pages, 16 figures, to appear in NeuroImage: Clinica

    Hybridizing 3-dimensional multiple object tracking with neurofeedback to enhance preparation, performance, and learning

    Full text link
    Le vaste domaine de l’amélioration cognitive traverse les applications comportementales, biochimiques et physiques. Aussi nombreuses sont les techniques que les limites de ces premières : des études de pauvre méthodologie, des pratiques éthiquement ambiguës, de faibles effets positifs, des effets secondaires significatifs, des couts financiers importants, un investissement de temps significatif, une accessibilité inégale, et encore un manque de transfert. L’objectif de cette thèse est de proposer une méthode novatrice d’intégration de l’une de ces techniques, le neurofeedback, directement dans un paradigme d’apprentissage afin d’améliorer la performance cognitive et l’apprentissage. Cette thèse propose les modalités, les fondements empiriques et des données à l’appui de ce paradigme efficace d’apprentissage ‘bouclé’. En manipulant la difficulté dans une tâche en fonction de l’activité cérébrale en temps réel, il est démontré que dans un paradigme d’apprentissage traditionnel (3-dimentional multiple object tracking), la vitesse et le degré d’apprentissage peuvent être améliorés de manière significative lorsque comparés au paradigme traditionnel ou encore à un groupe de contrôle actif. La performance améliorée demeure observée même avec un retrait du signal de rétroaction, ce qui suggère que les effets de l’entrainement amélioré sont consolidés et ne dépendent pas d’une rétroaction continue. Ensuite, cette thèse révèle comment de tels effets se produisent, en examinant les corrélés neuronaux des états de préparation et de performance à travers les conditions d’état de base et pendant la tâche, de plus qu’en fonction du résultat (réussite/échec) et de la difficulté (basse/moyenne/haute vitesse). La préparation, la performance et la charge cognitive sont mesurées via des liens robustement établis dans un contexte d’activité cérébrale fonctionnelle mesurée par l’électroencéphalographie quantitative. Il est démontré que l’ajout d’une assistance- à-la-tâche apportée par la fréquence alpha dominante est non seulement appropriée aux conditions de ce paradigme, mais influence la charge cognitive afin de favoriser un maintien du sujet dans sa zone de développement proximale, ce qui facilite l’apprentissage et améliore la performance. Ce type de paradigme d’apprentissage peut contribuer à surmonter, au minimum, un des limites fondamentales du neurofeedback et des autres techniques d’amélioration cognitive : le manque de transfert, en utilisant une méthode pouvant être intégrée directement dans le contexte dans lequel l’amélioration de la performance est souhaitée.The domain of cognitive enhancement is vast, spanning behavioral, biochemical and physical applications. The techniques are as numerous as are the limitations: poorly conducted studies, ethically ambiguous practices, limited positive effects, significant side-effects, high financial costs, significant time investment, unequal accessibility, and lack of transfer. The purpose of this thesis is to propose a novel way of integrating one of these techniques, neurofeedback, directly into a learning context in order to enhance cognitive performance and learning. This thesis provides the framework, empirical foundations, and supporting evidence for a highly efficient ‘closed-loop’ learning paradigm. By manipulating task difficulty based on a measure of cognitive load within a classic learning scenario (3-dimentional multiple object tracking) using real-time brain activity, results demonstrate that over 10 sessions, speed and degree of learning can be substantially improved compared with a classic learning system or an active sham-control group. Superior performance persists even once the feedback signal is removed, which suggests that the effects of enhanced training are consolidated and do not rely on continued feedback. Next, this thesis examines how these effects occur, exploring the neural correlates of the states of preparedness and performance across baseline and task conditions, further examining correlates related to trial results (correct/incorrect) and task difficulty (slow/medium/fast speeds). Cognitive preparedness, performance and load are measured using well-established relationships between real-time quantified brain activity as measured by quantitative electroencephalography. It is shown that the addition of neurofeedback-based task assistance based on peak alpha frequency is appropriate to task conditions and manages to influence cognitive load, keeping the subject in the zone of proximal development more often, facilitating learning and improving performance. This type of learning paradigm could contribute to overcoming at least one of the fundamental limitations of neurofeedback and other cognitive enhancement techniques : a lack of observable transfer effects, by utilizing a method that can be directly integrated into the context in which improved performance is sought

    Central Auditory Processing Disorder: Towards a Therapeutic EEG Neurofeedback Brain Computer Interface

    Get PDF
    Central auditory processing (CAP) refers to the process of integrating and processing auditory signals in the central auditory nervous system. Problems with CAP are thought to underlie central auditory processing disorder (CAPD) which is associated with specific populations of adults and children who demonstrate poor performance on tasks. CAPD is typically diagnosed in individuals with poor auditory perception who also show no physical problems with their inner ear, outer ear, or cochlea (Keilman et al., 2013; Koravand et al 2013). CAPD is characterized by an impaired ability to filter out background noise and distinguish between different auditory stimuli, and is often comorbid with other neurological disorders (Kim & Chung, 2013; Strauss et al., 2008). Exciting new research has shown improvements those identified with CAPD-like disorders can improve speech comprehension, harmonic recognition, and sound localization, just by engaging in behaviors which are associated with CAP (Alain et al., 2014; Anderson et al., 2013). The overarching aim of this research was to create a online electroencephalography (EEG) brain computer interface (BCI) that could be used by anyone, not just those who show CAPD symptomatology, to gain increased performance on central auditory processing tasks

    Functional Dissociation of Ongoing Oscillatory Brain States

    Get PDF
    The state of a neural assembly preceding an incoming stimulus is assumed to modulate the processing of subsequently presented stimuli. The nature of this state can differ with respect to the frequency of ongoing oscillatory activity. Oscillatory brain activity of specific frequency range such as alpha (8–12 Hz) and gamma (above 30 Hz) band oscillations are hypothesized to play a functional role in cognitive processing. Therefore, a selective modulation of this prestimulus activity could clarify the functional role of these prestimulus fluctuations. For this purpose, we adopted a novel non-invasive brain-computer-interface (BCI) strategy to selectively increase alpha or gamma band activity in the occipital cortex combined with an adaptive presentation of visual stimuli within specific brain states. During training, oscillatory brain activity was estimated online and fed back to the participants to enable a deliberate modulation of alpha or gamma band oscillations. Results revealed that volunteers selectively increased alpha and gamma frequency oscillations with a high level of specificity regarding frequency range and localization. At testing, alpha or gamma band activity was classified online and at defined levels of activity, visual objects embedded in noise were presented instantly and had to be detected by the volunteer. In experiment I, the effect of two levels of prestimulus gamma band activity on visual processing was examined. During phases of increased gamma band activity significantly more visual objects were detected. In experiment II, the effect was compared against increased levels of alpha band activity. An improvement of visual processing was only observed for enhanced gamma band activity. Both experiments demonstrate the specific functional role of prestimulus gamma band oscillations for perceptual processing. We propose that the BCI method permits the selective modulation of oscillatory activity and the direct assessment of behavioral consequences to test for functional dissociations of different oscillatory brain states

    Effects of Spatial Specific Neurofeedback Training in Anterior Cingulate Cortex

    Get PDF
    This study examines the efficacy of a recently developed methodology of spatial-specific neurofeedback training in the cognitive division of the anterior cingulate gyrus and describes its relationship with cortical regions known to be involved in executive functions and attentional processes. This study was conducted with eight non-clinical students, four male and four female, with a mean age of twenty-two. Exclusion criteria consisted of prior head trauma, neurological or psychiatric disorders, medications and recent drug or alcohol use. Learning occurred in the ACcd at significant levels over sessions and in the anterior regions that receive projections from the AC. There appears to be a multi-dimensional executive circuit that increases in the same frequency in apparent synchrony with the AC and it may be possible to activate this circuit by training one cortical region using LNFB

    Validating the efficacy of neurofeedback for optimising performance.

    Get PDF
    The field of neurofeedback training has largely proceeded without validation. Here we review our studies directed at validating SMR, beta and alpha–theta protocols for improving attention, memory, mood and music and dance performance in healthy participants. Important benefits were demonstrable with cognitive and neurophysiological measures which were predicted on the basis of regression models of learning. These are initial steps in providing a much needed scientific basis to neurofeedback, but much remains to be done
    corecore