9,463 research outputs found

    Practical application of pseudospectral optimization to robot path planning

    Get PDF
    To obtain minimum time or minimum energy trajectories for robots it is necessary to employ planning methods which adequately consider the platformā€™s dynamic properties. A variety of sampling, graph-based or local receding-horizon optimisation methods have previously been proposed. These typically use simpliļ¬ed kino-dynamic models to avoid the signiļ¬cant computational burden of solving this problem in a high dimensional state-space. In this paper we investigate solutions from the class of pseudospectral optimisation methods which have grown in favour amongst the optimal control community in recent years. These methods have high computational efficiency and rapid convergence properties. We present a practical application of such an approach to the robot path planning problem to provide a trajectory considering the robotā€™s dynamic properties. We extend the existing literature by augmenting the path constraints with sensed obstacles rather than predeļ¬ned analytical functions to enable real world application

    Spatio-temporal learning with the online finite and infinite echo-state Gaussian processes

    Get PDF
    Successful biological systems adapt to change. In this paper, we are principally concerned with adaptive systems that operate in environments where data arrives sequentially and is multivariate in nature, for example, sensory streams in robotic systems. We contribute two reservoir inspired methods: 1) the online echostate Gaussian process (OESGP) and 2) its infinite variant, the online infinite echostate Gaussian process (OIESGP) Both algorithms are iterative fixed-budget methods that learn from noisy time series. In particular, the OESGP combines the echo-state network with Bayesian online learning for Gaussian processes. Extending this to infinite reservoirs yields the OIESGP, which uses a novel recursive kernel with automatic relevance determination that enables spatial and temporal feature weighting. When fused with stochastic natural gradient descent, the kernel hyperparameters are iteratively adapted to better model the target system. Furthermore, insights into the underlying system can be gleamed from inspection of the resulting hyperparameters. Experiments on noisy benchmark problems (one-step prediction and system identification) demonstrate that our methods yield high accuracies relative to state-of-the-art methods, and standard kernels with sliding windows, particularly on problems with irrelevant dimensions. In addition, we describe two case studies in robotic learning-by-demonstration involving the Nao humanoid robot and the Assistive Robot Transport for Youngsters (ARTY) smart wheelchair

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved

    Modelling the influence of non-minimum phase zeros on gradient based linear iterative learning control

    Get PDF
    The subject of this paper is modeling of the influence of non-minimum phase plant dynamics on the performance possible from gradient based norm optimal iterative learning control algorithms. It is established that performance in the presence of right-half plane plant zeros typically has two phases. These consist of an initial fast monotonic reduction of the L2 error norm followed by a very slow asymptotic convergence. Although the norm of the tracking error does eventually converge to zero, the practical implications over finite trials is apparent convergence to a non-zero error. The source of this slow convergence is identified and a model of this behavior as a (set of) linear constraint(s) is developed. This is shown to provide a good prediction of the magnitude of error norm where slow convergence begins. Formulae for this norm are obtained for single-input single-output systems with several right half plane zeroes using Lagrangian techniques and experimental results are given that confirm the practical validity of the analysis
    • ā€¦
    corecore