198,148 research outputs found

    Transformers Meet Directed Graphs

    Full text link
    Transformers were originally proposed as a sequence-to-sequence model for text but have become vital for a wide range of modalities, including images, audio, video, and undirected graphs. However, transformers for directed graphs are a surprisingly underexplored topic, despite their applicability to ubiquitous domains, including source code and logic circuits. In this work, we propose two direction- and structure-aware positional encodings for directed graphs: (1) the eigenvectors of the Magnetic Laplacian - a direction-aware generalization of the combinatorial Laplacian; (2) directional random walk encodings. Empirically, we show that the extra directionality information is useful in various downstream tasks, including correctness testing of sorting networks and source code understanding. Together with a data-flow-centric graph construction, our model outperforms the prior state of the art on the Open Graph Benchmark Code2 relatively by 14.7%.Comment: 29 page

    Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities

    Full text link
    Many complex networks display a mesoscopic structure with groups of nodes sharing many links with the other nodes in their group and comparatively few with nodes of different groups. This feature is known as community structure and encodes precious information about the organization and the function of the nodes. Many algorithms have been proposed but it is not yet clear how they should be tested. Recently we have proposed a general class of undirected and unweighted benchmark graphs, with heterogenous distributions of node degree and community size. An increasing attention has been recently devoted to develop algorithms able to consider the direction and the weight of the links, which require suitable benchmark graphs for testing. In this paper we extend the basic ideas behind our previous benchmark to generate directed and weighted networks with built-in community structure. We also consider the possibility that nodes belong to more communities, a feature occurring in real systems, like, e. g., social networks. As a practical application, we show how modularity optimization performs on our new benchmark.Comment: 9 pages, 13 figures. Final version published in Physical Review E. The code to create the benchmark graphs can be freely downloaded from http://santo.fortunato.googlepages.com/inthepress

    Nonasymptotic Convergence Rates for Cooperative Learning Over Time-Varying Directed Graphs

    Full text link
    We study the problem of distributed hypothesis testing with a network of agents where some agents repeatedly gain access to information about the correct hypothesis. The group objective is to globally agree on a joint hypothesis that best describes the observed data at all the nodes. We assume that the agents can interact with their neighbors in an unknown sequence of time-varying directed graphs. Following the pioneering work of Jadbabaie, Molavi, Sandroni, and Tahbaz-Salehi, we propose local learning dynamics which combine Bayesian updates at each node with a local aggregation rule of private agent signals. We show that these learning dynamics drive all agents to the set of hypotheses which best explain the data collected at all nodes as long as the sequence of interconnection graphs is uniformly strongly connected. Our main result establishes a non-asymptotic, explicit, geometric convergence rate for the learning dynamic
    corecore