7,231 research outputs found

    Testing for spatial heterogeneity in functional MRI using the multivariate general linear model

    Get PDF
    Much current research in functional MRI employs multivariate machine learning approaches (e.g., support vector machines) to detect fine-scale spatial patterns from the temporal fluctuations of the neural signal. The aim of many studies is not classification, however, but investigation of multivariate spatial patterns, which pattern classifiers detect only indirectly. Here we propose a direct statistical measure for the existence of fine-scale spatial patterns (or spatial heterogeneity) applicable for fMRI datasets. We extend the univariate general linear model (typically used in fMRI analysis) to a multivariate case. We demonstrate that contrasting maximum likelihood estimations of different restrictions on this multivariate model can be used to estimate the extent of spatial heterogeneity in fMRI data. Under asymptotic assumptions inference can be made with reference to the X2 distribution. The test statistic is then assessed using simulated timecourses derived from real fMRI data. This demonstrates the utility of the proposed measure of heterogeneity as well as considerations in its application. Measuring spatial heterogeneity in fMRI has important theoretical implications in its own right and has potential uses for better characterising neurological conditions such as stroke and Alzheimer’s disease.wordsNeuroimaging ; Multivariate pattern analysis ; Maximum likelihood estimation ; Seemingly unrelated regression

    Testing for spatial heterogeneity in functional MRI using the multivariate general linear model

    Get PDF
    Much current research in functional MRI employs multivariate machine learning approaches (e.g., support vector machines) to detect fine-scale spatial patterns from the temporal fluctuations of the neural signal. The aim of many studies is not classification, however, but investigation of multivariate spatial patterns, which pattern classifiers detect only indirectly. Here we propose a direct statistical measure for the existence of fine-scale spatial patterns (or spatial heterogeneity) applicable for fMRI datasets. We extend the univariate general linear model (typically used in fMRI analysis) to a multivariate case. We demonstrate that contrasting maximum likelihood estimations of different restrictions on this multivariate model can be used to estimate the extent of spatial heterogeneity in fMRI data. Under asymptotic assumptions inference can be made with reference to the X2 distribution. The test statistic is then assessed using simulated timecourses derived from real fMRI data. This demonstrates the utility of the proposed measure of heterogeneity as well as considerations in its application. Measuring spatial heterogeneity in fMRI has important theoretical implications in its own right and has potential uses for better characterising neurological conditions such as stroke and Alzheimer’s disease

    Resting state correlates of subdimensions of anxious affect

    Get PDF
    Resting state fMRI may help identify markers of risk for affective disorder. Given the comorbidity of anxiety and depressive disorders and the heterogeneity of these disorders as defined by DSM, an important challenge is to identify alterations in resting state brain connectivity uniquely associated with distinct profiles of negative affect. The current study aimed to address this by identifying differences in brain connectivity specifically linked to cognitive and physiological profiles of anxiety, controlling for depressed affect. We adopted a two-stage multivariate approach. Hierarchical clustering was used to independently identify dimensions of negative affective style and resting state brain networks. Combining the clustering results, we examined individual differences in resting state connectivity uniquely associated with subdimensions of anxious affect, controlling for depressed affect. Physiological and cognitive subdimensions of anxious affect were identified. Physiological anxiety was associated with widespread alterations in insula connectivity, including decreased connectivity between insula subregions and between the insula and other medial frontal and subcortical networks. This is consistent with the insula facilitating communication between medial frontal and subcortical regions to enable control of physiological affective states. Meanwhile, increased connectivity within a frontoparietal-posterior cingulate cortex-precunous network was specifically associated with cognitive anxiety, potentially reflecting increased spontaneous negative cognition (e.g., worry). These findings suggest that physiological and cognitive anxiety comprise subdimensions of anxiety-related affect and reveal associated alterations in brain connectivity

    Neuroimaging of structural pathology and connectomics in traumatic brain injury: Toward personalized outcome prediction.

    Get PDF
    Recent contributions to the body of knowledge on traumatic brain injury (TBI) favor the view that multimodal neuroimaging using structural and functional magnetic resonance imaging (MRI and fMRI, respectively) as well as diffusion tensor imaging (DTI) has excellent potential to identify novel biomarkers and predictors of TBI outcome. This is particularly the case when such methods are appropriately combined with volumetric/morphometric analysis of brain structures and with the exploration of TBI-related changes in brain network properties at the level of the connectome. In this context, our present review summarizes recent developments on the roles of these two techniques in the search for novel structural neuroimaging biomarkers that have TBI outcome prognostication value. The themes being explored cover notable trends in this area of research, including (1) the role of advanced MRI processing methods in the analysis of structural pathology, (2) the use of brain connectomics and network analysis to identify outcome biomarkers, and (3) the application of multivariate statistics to predict outcome using neuroimaging metrics. The goal of the review is to draw the community's attention to these recent advances on TBI outcome prediction methods and to encourage the development of new methodologies whereby structural neuroimaging can be used to identify biomarkers of TBI outcome

    Advancing Statistical Inference For Population Studies In Neuroimaging Using Machine Learning

    Get PDF
    Modern neuroimaging techniques allow us to investigate the brain in vivo and in high resolution, providing us with high dimensional information regarding the structure and the function of the brain in health and disease. Statistical analysis techniques transform this rich imaging information into accessible and interpretable knowledge that can be used for investigative as well as diagnostic and prognostic purposes. A prevalent area of research in neuroimaging is group comparison, i.e., the comparison of the imaging data of two groups (e.g. patients vs. healthy controls or people who respond to treatment vs. people who don\u27t) to identify discriminative imaging patterns that characterize different conditions. In recent years, the neuroimaging community has adopted techniques from mathematics, statistics, and machine learning to introduce novel methodologies targeting the improvement of our understanding of various neuropsychiatric and neurodegenerative disorders. However, existing statistical methods are limited by their reliance on ad-hoc assumptions regarding the homogeneity of disease effect, spatial properties of the underlying signal and the covariate structure of data, which imposes certain constraints about the sampling of datasets. 1. First, the overarching assumption behind most analytical tools, which are commonly used in neuroimaging studies, is that there is a single disease effect that differentiates the patients from controls. In reality, however, the disease effect may be heterogeneously expressed across the patient population. As a consequence, when searching for a single imaging pattern that characterizes the difference between healthy controls and patients, we may only get a partial or incomplete picture of the disease effect. 2. Second, and importantly, most analyses assume a uniform shape and size of disease effect. As a consequence, a common step in most neuroimaging analyses it to apply uniform smoothing of the data to aggregate regional information to each voxel to improve the signal to noise ratio. However, the shape and size of the disease patterns may not be uniformly represented across the brain. 3. Lastly, in practical scenarios, imaging datasets commonly include variations due to multiple covariates, which often have effects that overlap with the searched disease effects. To minimize the covariate effects, studies are carefully designed by appropriately matching the populations under observation. The difficulty of this task is further exacerbated by the advent of big data analyses that often entail the aggregation of large datasets collected across many clinical sites. The goal of this thesis is to address each of the aforementioned assumptions and limitations by introducing robust mathematical formulations, which are founded on multivariate machine learning techniques that integrate discriminative and generative approaches. Specifically, 1. First, we introduce an algorithm termed HYDRA which stands for heterogeneity through discriminative analysis. This method parses the heterogeneity in neuroimaging studies by simultaneously performing clustering and classification by use of piecewise linear decision boundaries. 2. Second, we propose to perform regionally linear multivariate discriminative statistical mapping (MIDAS) toward finding the optimal level of variable smoothing across the brain anatomy and tease out group differences in neuroimaging datasets. This method makes use of overlapping regional discriminative filters to approximate a matched filter that best delineates the underlying disease effect. 3. Lastly, we develop a method termed generative discriminative machines (GDM) toward reducing the effect of confounds in biased samples. The proposed method solves for a discriminative model that can also optimally generate the data when taking into account the covariate structure. We extensively validated the performance of the developed frameworks in the presence of diverse types of simulated scenarios. Furthermore, we applied our methods on a large number of clinical datasets that included structural and functional neuroimaging data as well as genetic data. Specifically, HYDRA was used for identifying distinct subtypes of Alzheimer\u27s Disease. MIDAS was applied for identifying the optimally discriminative patterns that differentiated between truth-telling and lying functional tasks. GDM was applied on a multi-site prediction setting with severely confounded samples. Our promising results demonstrate the potential of our methods to advance neuroimaging analysis beyond the set of assumptions that limit its capacity and improve statistical power

    Grey-matter texture abnormalities and reduced hippocampal volume are distinguishing features of schizophrenia

    Get PDF
    Neurodevelopmental processes are widely believed to underlie schizophrenia. Analysis of brain texture from conventional magnetic resonance imaging (MRI) can detect disturbance in brain cytoarchitecture. We tested the hypothesis that patients with schizophrenia manifest quantitative differences in brain texture that, alongside discrete volumetric changes, may serve as an endophenotypic biomarker. Texture analysis (TA) of grey matter distribution and voxel-based morphometry (VBM) of regional brain volumes were applied to MRI scans of 27 patients with schizophrenia and 24 controls. Texture parameters (uniformity and entropy) were also used as covariates in VBM analyses to test for correspondence with regional brain volume. Linear discriminant analysis tested if texture and volumetric data predicted diagnostic group membership (schizophrenia or control). We found that uniformity and entropy of grey matter differed significantly between individuals with schizophrenia and controls at the fine spatial scale (filter width below 2 mm). Within the schizophrenia group, these texture parameters correlated with volumes of the left hippocampus, right amygdala and cerebellum. The best predictor of diagnostic group membership was the combination of fine texture heterogeneity and left hippocampal size. This study highlights the presence of distributed grey-matter abnormalities in schizophrenia, and their relation to focal structural abnormality of the hippocampus. The conjunction of these features has potential as a neuroimaging endophenotype of schizophrenia

    Functional Magnetic Resonance Imaging for Imaging Neural Activity in the Human Brain: The Annual Progress

    Get PDF
    Functional magnetic resonance imaging (fMRI) is recently developed and applied to measure the hemodynamic response related to neural activity. The fMRI can not only noninvasively record brain signals without risks of ionising radiation inherent in other scanning methods, such as CT or PET scans, but also record signal from all regions of the brain, unlike EEG/MEG which are biased towards the cortical surface. This paper introduces the fundamental principles and summarizes the research progress of the last year for imaging neural activity in the human brain. Aims of functional analysis of neural activity from fMRI include biological findings, functional connectivity, vision and hearing research, emotional research, neurosurgical planning, pain management, and many others. Besides formulations and basic processing methods, models and strategies of processing technology are introduced, including general linear model, nonlinear model, generative model, spatial pattern analysis, statistical analysis, correlation analysis, and multimodal combination. This paper provides readers the most recent representative contributions in the area
    corecore