6,705 research outputs found

    The N-K Problem in Power Grids: New Models, Formulations and Numerical Experiments (extended version)

    Get PDF
    Given a power grid modeled by a network together with equations describing the power flows, power generation and consumption, and the laws of physics, the so-called N-k problem asks whether there exists a set of k or fewer arcs whose removal will cause the system to fail. The case where k is small is of practical interest. We present theoretical and computational results involving a mixed-integer model and a continuous nonlinear model related to this question.Comment: 40 pages 3 figure

    Contingency-Constrained Unit Commitment with Post-Contingency Corrective Recourse

    Full text link
    We consider the problem of minimizing costs in the generation unit commitment problem, a cornerstone in electric power system operations, while enforcing an N-k-e reliability criterion. This reliability criterion is a generalization of the well-known NN-kk criterion, and dictates that at least (1−ej)(1-e_ j) fraction of the total system demand must be met following the failures of kk or fewer system components. We refer to this problem as the Contingency-Constrained Unit Commitment problem, or CCUC. We present a mixed-integer programming formulation of the CCUC that accounts for both transmission and generation element failures. We propose novel cutting plane algorithms that avoid the need to explicitly consider an exponential number of contingencies. Computational studies are performed on several IEEE test systems and a simplified model of the Western US interconnection network, which demonstrate the effectiveness of our proposed methods relative to current state-of-the-art

    On optimizing over lift-and-project closures

    Full text link
    The lift-and-project closure is the relaxation obtained by computing all lift-and-project cuts from the initial formulation of a mixed integer linear program or equivalently by computing all mixed integer Gomory cuts read from all tableau's corresponding to feasible and infeasible bases. In this paper, we present an algorithm for approximating the value of the lift-and-project closure. The originality of our method is that it is based on a very simple cut generation linear programming problem which is obtained from the original linear relaxation by simply modifying the bounds on the variables and constraints. This separation LP can also be seen as the dual of the cut generation LP used in disjunctive programming procedures with a particular normalization. We study some properties of this separation LP in particular relating it to the equivalence between lift-and-project cuts and Gomory cuts shown by Balas and Perregaard. Finally, we present some computational experiments and comparisons with recent related works

    On Minimal Valid Inequalities for Mixed Integer Conic Programs

    Full text link
    We study disjunctive conic sets involving a general regular (closed, convex, full dimensional, and pointed) cone K such as the nonnegative orthant, the Lorentz cone or the positive semidefinite cone. In a unified framework, we introduce K-minimal inequalities and show that under mild assumptions, these inequalities together with the trivial cone-implied inequalities are sufficient to describe the convex hull. We study the properties of K-minimal inequalities by establishing algebraic necessary conditions for an inequality to be K-minimal. This characterization leads to a broader algebraically defined class of K- sublinear inequalities. We establish a close connection between K-sublinear inequalities and the support functions of sets with a particular structure. This connection results in practical ways of showing that a given inequality is K-sublinear and K-minimal. Our framework generalizes some of the results from the mixed integer linear case. It is well known that the minimal inequalities for mixed integer linear programs are generated by sublinear (positively homogeneous, subadditive and convex) functions that are also piecewise linear. This result is easily recovered by our analysis. Whenever possible we highlight the connections to the existing literature. However, our study unveils that such a cut generating function view treating the data associated with each individual variable independently is not possible in the case of general cones other than nonnegative orthant, even when the cone involved is the Lorentz cone
    • …
    corecore