37,145 research outputs found

    Specifying and Executing Optimizations for Parallel Programs

    Full text link
    Compiler optimizations, usually expressed as rewrites on program graphs, are a core part of all modern compilers. However, even production compilers have bugs, and these bugs are difficult to detect and resolve. The problem only becomes more complex when compiling parallel programs; from the choice of graph representation to the possibility of race conditions, optimization designers have a range of factors to consider that do not appear when dealing with single-threaded programs. In this paper we present PTRANS, a domain-specific language for formal specification of compiler transformations, and describe its executable semantics. The fundamental approach of PTRANS is to describe program transformations as rewrites on control flow graphs with temporal logic side conditions. The syntax of PTRANS allows cleaner, more comprehensible specification of program optimizations; its executable semantics allows these specifications to act as prototypes for the optimizations themselves, so that candidate optimizations can be tested and refined before going on to include them in a compiler. We demonstrate the use of PTRANS to state, test, and refine the specification of a redundant store elimination optimization on parallel programs.Comment: In Proceedings GRAPHITE 2014, arXiv:1407.767

    COST Action IC 1402 ArVI: Runtime Verification Beyond Monitoring -- Activity Report of Working Group 1

    Full text link
    This report presents the activities of the first working group of the COST Action ArVI, Runtime Verification beyond Monitoring. The report aims to provide an overview of some of the major core aspects involved in Runtime Verification. Runtime Verification is the field of research dedicated to the analysis of system executions. It is often seen as a discipline that studies how a system run satisfies or violates correctness properties. The report exposes a taxonomy of Runtime Verification (RV) presenting the terminology involved with the main concepts of the field. The report also develops the concept of instrumentation, the various ways to instrument systems, and the fundamental role of instrumentation in designing an RV framework. We also discuss how RV interplays with other verification techniques such as model-checking, deductive verification, model learning, testing, and runtime assertion checking. Finally, we propose challenges in monitoring quantitative and statistical data beyond detecting property violation

    Relational Symbolic Execution

    Full text link
    Symbolic execution is a classical program analysis technique used to show that programs satisfy or violate given specifications. In this work we generalize symbolic execution to support program analysis for relational specifications in the form of relational properties - these are properties about two runs of two programs on related inputs, or about two executions of a single program on related inputs. Relational properties are useful to formalize notions in security and privacy, and to reason about program optimizations. We design a relational symbolic execution engine, named RelSym which supports interactive refutation, as well as proving of relational properties for programs written in a language with arrays and for-like loops

    Specification Patterns for Robotic Missions

    Get PDF
    Mobile and general-purpose robots increasingly support our everyday life, requiring dependable robotics control software. Creating such software mainly amounts to implementing their complex behaviors known as missions. Recognizing the need, a large number of domain-specific specification languages has been proposed. These, in addition to traditional logical languages, allow the use of formally specified missions for synthesis, verification, simulation, or guiding the implementation. For instance, the logical language LTL is commonly used by experts to specify missions, as an input for planners, which synthesize the behavior a robot should have. Unfortunately, domain-specific languages are usually tied to specific robot models, while logical languages such as LTL are difficult to use by non-experts. We present a catalog of 22 mission specification patterns for mobile robots, together with tooling for instantiating, composing, and compiling the patterns to create mission specifications. The patterns provide solutions for recurrent specification problems, each of which detailing the usage intent, known uses, relationships to other patterns, and---most importantly---a template mission specification in temporal logic. Our tooling produces specifications expressed in the LTL and CTL temporal logics to be used by planners, simulators, or model checkers. The patterns originate from 245 realistic textual mission requirements extracted from the robotics literature, and they are evaluated upon a total of 441 real-world mission requirements and 1251 mission specifications. Five of these reflect scenarios we defined with two well-known industrial partners developing human-size robots. We validated our patterns' correctness with simulators and two real robots

    Automated Web Applications Testing

    Get PDF
    Unit tests are a vital part of several software development practices and processes such as Test-First Programming, Extreme Programming and Test-Driven Development. This article shortly presents the software quality and testing concepts as well as an introduction to an automated unit testing framework for PHP web based applicationssoftware quality, continuous integration, unit testing

    Towards composition of verified hardware devices

    Get PDF
    Computers are being used where no affordable level of testing is adequate. Safety and life critical systems must find a replacement for exhaustive testing to guarantee their correctness. Through a mathematical proof, hardware verification research has focused on device verification and has largely ignored system composition verification. To address these deficiencies, we examine how the current hardware verification methodology can be extended to verify complete systems
    • …
    corecore