781 research outputs found

    High quality testing of grid style power gating

    No full text
    This paper shows that existing delay-based testing techniques for power gating exhibit fault coverage loss due to unconsidered delays introduced by the structure of the virtual voltage power-distribution-network (VPDN). To restore this loss, which could reach up to 70.3% on stuck-open faults, we propose a design-for-testability (DFT) logic that considers the impact of VPDN on fault coverage in order to constitute the proper interface between the VPDN and the DFT. The proposed logic can be easily implemented on-top of existing DFT solutions and its overhead is optimized by an algorithm that offers trade-off flexibility between test-application-time and hardware overhead. Through physical layout SPICE simulations, we show complete fault coverage recovery on stuck-open faults and 43.2% test-application-time improvement compared to a previously proposed DFT technique. To the best of our knowledge, this paper presents the first analysis of the VPDN impact on test qualit

    Testing mixed-signal cores: a practical oscillation-based test in an analog macrocell

    Get PDF
    A formal set of design decisions can aid in using oscillation-based test (OBT) for analog subsystems in SoCs. The goal is to offer designers testing options that do not have significant area overhead, performance degradation, or test time. This work shows that OBT is a potential candidate for IP providers to use in combination with functional test techniques. We have shown how to modify the basic concept of OBT to come up with a practical method. Using our approach, designers can use OBT to pave the way for future developments in SoC testing, and it is simple to extend this idea to BIST.European Union 2635

    Delay test for diagnosis of power switches

    Get PDF
    Power switches are used as part of power-gating technique to reduce leakage power of a design. To the best of our knowledge, this is the first work in open-literature to show a systematic diagnosis method for accurately diagnosingpower switches. The proposed diagnosis method utilizes recently proposed DFT solution for efficient testing of power switches in the presence of PVT variation. It divides power switches into segments such that any faulty power switch is detectable thereby achieving high diagnosis accuracy. The proposed diagnosis method has been validated through SPICE simulation using a number of ISCAS benchmarks synthesized with a 90-nm gate library. Simulation results show that when considering the influence of process variation, the worst case loss of accuracy is less than 4.5%; and the worst case loss of accuracy is less than 12% when considering VT (Voltage and Temperature) variations

    On-Line Dependability Enhancement of Multiprocessor SoCs by Resource Management

    Get PDF
    This paper describes a new approach towards dependable design of homogeneous multi-processor SoCs in an example satellite-navigation application. First, the NoC dependability is functionally verified via embedded software. Then the Xentium processor tiles are periodically verified via on-line self-testing techniques, by using a new IIP Dependability Manager. Based on the Dependability Manager results, faulty tiles are electronically excluded and replaced by fault-free spare tiles via on-line resource management. This integrated approach enables fast electronic fault detection/diagnosis and repair, and hence a high system availability. The dependability application runs in parallel with the actual application, resulting in a very dependable system. All parts have been verified by simulation

    Test exploration and validation using transaction level models

    Get PDF
    The complexity of the test infrastructure and test strategies in systems-on-chip approaches the complexity of the functional design space. This paper presents test design space exploration and validation of test strategies and schedules using transaction level models (TLMs). Since many aspects of testing involve the transfer of a significant amount of test stimuli and responses, the communication-centric view of TLMs suits this purpose exceptionally wel

    Diagnosis of power switches with power-distribution-network consideration

    Get PDF
    This paper examines diagnosis of power switches when the power-distribution-network (PDN) is considered as a high resolution distributed electrical model. The analysis shows that for a diagnosis method to perform high diagnosis accuracy and resolution, the distributed nature of PDN should not be simplified by a lumped model. For this reason, a PDN-aware diagnosis method for power switches fault grading is proposed. The proposed method utilizes a novel signature generation design-for-testability (DFT) unit, the signatures of which are processed by a novel diagnosis algorithm that grades the magnitude of faults. Through simulations of physical layout SPICE models, we explore the trade-offs of the proposed method between diagnosis accuracy and diagnosis resolution against area overhead and we show that 100% diagnosis accuracy and up to 98% diagnosis resolution can be achieved with negligible cost

    A programmable BIST architecture for clusters of Multiple-Port SRAMs

    Get PDF
    This paper presents a BIST architecture, based on a single microprogrammable BIST processor and a set of memory wrappers, designed to simplify the test of a system containing many distributed multi-port SRAMs of different sizes (number of bits, number of words), access protocol (asynchronous, synchronous), and timin

    Leakage Current Analysis for Diagnosis of Bridge Defects in Power-Gating Designs

    Get PDF
    Manufacturing defects that do not affect the functional operation of low power Integrated Circuits (ICs) can nevertheless impact their power saving capability. We show that stuck-ON faults on the power switches and resistive bridges between the power networks can impair the power saving capability of power-gating designs. For quantifying the impact of such faults on the power savings of power-gating designs, we propose a diagnosis technique that targets bridges between the power networks. The proposed technique is based on the static power analysis of a power-gating design in stand-by mode and it utilizes a novel on-chip signature generation unit, which is sensitive to the voltage level between power rails, the measurements of which are processed off-line for the diagnosis of bridges that can adversely affect power savings. We explore, through SPICE simulation of the largest IWLS’05 benchmarks synthesised using a 32 nm CMOS technology, the trade-offs achieved by the proposed technique between diagnosis accuracy and area cost and we evaluate its robustness against process variation. The proposed technique achieves a diagnosis resolution that is higher than 98.6% and 97.9% for bridges of R ≳ 10MΩ(weak bridges) and bridges of R â‰Č 10MΩ (strong bridges), respectively, and a diagnosis accuracy higher than 94.5% for all the examined defects. The area overhead is small and scalable: it is found to be 1.8% and 0.3% for designs with 27K and 157K gate equivalents, respectively

    DFT Architecture with Power-Distribution-Network Consideration for Delay-based Power Gating Test

    Get PDF
    This paper shows that existing delay-based testing techniques for power gating exhibit both fault coverage and yield loss due to deviations at the charging delay introduced by the distributed nature of the power-distribution-networks (PDNs). To restore this test quality loss, which could reach up to 67.7% of false passes and 25% of false fails due to stuck-open faults, we propose a design-for-testability (DFT) logic that accounts for a distributed PDN. The proposed logic is optimized by an algorithm that also handles uncertainty due to process variations and offers trade-off flexibility between test-application time and area cost. A calibration process is proposed to bridge model-to-hardware discrepancies and increase test quality when considering systematic variations. Through SPICE simulations, we show complete recovery of the test quality lost due to PDNs. The proposed method is robust sustaining 80.3% to 98.6% of the achieved test quality under high random and systematic process variations. To the best of our knowledge, this paper presents the first analysis of the PDN impact on test quality and offers a unified test solution for both ring and grid power gating styles
    • 

    corecore