17,207 research outputs found

    Testing Top Monotonicity

    Full text link
    Top monotonicity is a relaxation of various well-known domain restrictions such as single-peaked and single-crossing for which negative impossibility results are circumvented and for which the median-voter theorem still holds. We examine the problem of testing top monotonicity and present a characterization of top monotonicity with respect to non-betweenness constraints. We then extend the definition of top monotonicity to partial orders and show that testing top monotonicity of partial orders is NP-complete

    Is more health always better? Exploring public preferences that violate monotonicity

    Get PDF
    Abásolo and Tsuchiya (2004a) report on an empirical study to elicit public preferences regarding the efficiency-equality trade-off in health, where the majority of respondents violated monotonicity. The procedure used has been subject to criticisms regarding potential biases in the results. The aim of this paper is to analyse whether violation of monotonicity remains when a revised questionnaire is used. We test: whether monotonicity is violated when we allow for inequality neutral preferences and also if we allow for preferences that would reject any option which gives no health gain to one group; whether those who violate monotonicity actually have non-monotonic or Rawlsian preferences; whether the titration sequence of the original questionnaire may have biased the results; whether monotonicity is violated when an alternative question is administered. Finally, we also test for symmetry of preferences. The results confirm the evidence of the previous study regarding violation of monotonicity

    Ordered Level Planarity, Geodesic Planarity and Bi-Monotonicity

    Full text link
    We introduce and study the problem Ordered Level Planarity which asks for a planar drawing of a graph such that vertices are placed at prescribed positions in the plane and such that every edge is realized as a y-monotone curve. This can be interpreted as a variant of Level Planarity in which the vertices on each level appear in a prescribed total order. We establish a complexity dichotomy with respect to both the maximum degree and the level-width, that is, the maximum number of vertices that share a level. Our study of Ordered Level Planarity is motivated by connections to several other graph drawing problems. Geodesic Planarity asks for a planar drawing of a graph such that vertices are placed at prescribed positions in the plane and such that every edge is realized as a polygonal path composed of line segments with two adjacent directions from a given set SS of directions symmetric with respect to the origin. Our results on Ordered Level Planarity imply NPNP-hardness for any SS with S4|S|\ge 4 even if the given graph is a matching. Katz, Krug, Rutter and Wolff claimed that for matchings Manhattan Geodesic Planarity, the case where SS contains precisely the horizontal and vertical directions, can be solved in polynomial time [GD'09]. Our results imply that this is incorrect unless P=NPP=NP. Our reduction extends to settle the complexity of the Bi-Monotonicity problem, which was proposed by Fulek, Pelsmajer, Schaefer and \v{S}tefankovi\v{c}. Ordered Level Planarity turns out to be a special case of T-Level Planarity, Clustered Level Planarity and Constrained Level Planarity. Thus, our results strengthen previous hardness results. In particular, our reduction to Clustered Level Planarity generates instances with only two non-trivial clusters. This answers a question posed by Angelini, Da Lozzo, Di Battista, Frati and Roselli.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Quasi-monotonic segmentation of state variable behavior for reactive control

    Get PDF
    Real-world agents must react to changing conditions as they execute planned tasks. Conditions are typically monitored through time series representing state variables. While some predicates on these times series only consider one measure at a time, other predicates, sometimes called episodic predicates, consider sets of measures. We consider a special class of episodic predicates based on segmentation of the the measures into quasi-monotonic intervals where each interval is either quasi-increasing, quasi-decreasing, or quasi-flat. While being scale-based, this approach is also computational efficient and results can be computed exactly without need for approximation algorithms. Our approach is compared to linear spline and regression analysis

    High-order conservative finite difference GLM-MHD schemes for cell-centered MHD

    Get PDF
    We present and compare third- as well as fifth-order accurate finite difference schemes for the numerical solution of the compressible ideal MHD equations in multiple spatial dimensions. The selected methods lean on four different reconstruction techniques based on recently improved versions of the weighted essentially non-oscillatory (WENO) schemes, monotonicity preserving (MP) schemes as well as slope-limited polynomial reconstruction. The proposed numerical methods are highly accurate in smooth regions of the flow, avoid loss of accuracy in proximity of smooth extrema and provide sharp non-oscillatory transitions at discontinuities. We suggest a numerical formulation based on a cell-centered approach where all of the primary flow variables are discretized at the zone center. The divergence-free condition is enforced by augmenting the MHD equations with a generalized Lagrange multiplier yielding a mixed hyperbolic/parabolic correction, as in Dedner et al. (J. Comput. Phys. 175 (2002) 645-673). The resulting family of schemes is robust, cost-effective and straightforward to implement. Compared to previous existing approaches, it completely avoids the CPU intensive workload associated with an elliptic divergence cleaning step and the additional complexities required by staggered mesh algorithms. Extensive numerical testing demonstrate the robustness and reliability of the proposed framework for computations involving both smooth and discontinuous features.Comment: 32 pages, 14 figure, submitted to Journal of Computational Physics (Aug 7 2009
    corecore