23,155 research outputs found

    Beyond the golden run : evaluating the use of reference run models in fault injection analysis

    Get PDF
    Fault injection (FI) has been shown to be an effective approach to assess- ing the dependability of software systems. To determine the impact of faults injected during FI, a given oracle is needed. This oracle can take a variety of forms, however prominent oracles include (i) specifications, (ii) error detection mechanisms and (iii) golden runs. Focusing on golden runs, in this paper we show that there are classes of software which a golden run based approach can not be used to analyse. Specifically we demonstrate that a golden run based approach can not be used when analysing systems which employ a main control loop with an irregular period. Further, we show how a simple model, which has been refined using FI, can be employed as an oracle in the analysis of such a system

    A log mining approach for process monitoring in SCADA

    Get PDF
    SCADA (Supervisory Control and Data Acquisition) systems are used for controlling and monitoring industrial processes. We propose a methodology to systematically identify potential process-related threats in SCADA. Process-related threats take place when an attacker gains user access rights and performs actions, which look legitimate, but which are intended to disrupt the SCADA process. To detect such threats, we propose a semi-automated approach of log processing. We conduct experiments on a real-life water treatment facility. A preliminary case study suggests that our approach is effective in detecting anomalous events that might alter the regular process workflow

    Analysing system susceptibility to faults with simulation tools

    Get PDF
    In the paper we present original fault simulation tools developed in our Institute. These tools are targeted at system dependability evaluation. They provide mechanisms for detailed and aggregated fault effect analysis. Based on our experience with testing various software applications we outline the most important problems and discuss a sample of simulation results

    Systematically Detecting Packet Validation Vulnerabilities in Embedded Network Stacks

    Full text link
    Embedded Network Stacks (ENS) enable low-resource devices to communicate with the outside world, facilitating the development of the Internet of Things and Cyber-Physical Systems. Some defects in ENS are thus high-severity cybersecurity vulnerabilities: they are remotely triggerable and can impact the physical world. While prior research has shed light on the characteristics of defects in many classes of software systems, no study has described the properties of ENS defects nor identified a systematic technique to expose them. The most common automated approach to detecting ENS defects is feedback-driven randomized dynamic analysis ("fuzzing"), a costly and unpredictable technique. This paper provides the first systematic characterization of cybersecurity vulnerabilities in ENS. We analyzed 61 vulnerabilities across 6 open-source ENS. Most of these ENS defects are concentrated in the transport and network layers of the network stack, require reaching different states in the network protocol, and can be triggered by only 1-2 modifications to a single packet. We therefore propose a novel systematic testing framework that focuses on the transport and network layers, uses seeds that cover a network protocol's states, and systematically modifies packet fields. We evaluated this framework on 4 ENS and replicated 12 of the 14 reported IP/TCP/UDP vulnerabilities. On recent versions of these ENSs, it discovered 7 novel defects (6 assigned CVES) during a bounded systematic test that covered all protocol states and made up to 3 modifications per packet. We found defects in 3 of the 4 ENS we tested that had not been found by prior fuzzing research. Our results suggest that fuzzing should be deferred until after systematic testing is employed.Comment: 12 pages, 3 figures, to be published in the 38th IEEE/ACM International Conference on Automated Software Engineering (ASE 2023

    COST Action IC 1402 ArVI: Runtime Verification Beyond Monitoring -- Activity Report of Working Group 1

    Full text link
    This report presents the activities of the first working group of the COST Action ArVI, Runtime Verification beyond Monitoring. The report aims to provide an overview of some of the major core aspects involved in Runtime Verification. Runtime Verification is the field of research dedicated to the analysis of system executions. It is often seen as a discipline that studies how a system run satisfies or violates correctness properties. The report exposes a taxonomy of Runtime Verification (RV) presenting the terminology involved with the main concepts of the field. The report also develops the concept of instrumentation, the various ways to instrument systems, and the fundamental role of instrumentation in designing an RV framework. We also discuss how RV interplays with other verification techniques such as model-checking, deductive verification, model learning, testing, and runtime assertion checking. Finally, we propose challenges in monitoring quantitative and statistical data beyond detecting property violation

    Model Checking-based Software-FMEA: Assessment of Fault Tolerance and Error Detection Mechanisms

    Get PDF
    Failure Mode and Effects Analysis (FMEA) is a systematic technique to explore the possible failure modes of individual components or subsystems and determine their potential effects at the system level. Applications of FMEA are common in case of hardware and communication failures, but analyzing software failures (SW-FMEA) poses a number of challenges. Failures may originate in permanent software faults commonly called bugs, and their effects can be very subtle and hard to predict, due to the complex nature of programs. Therefore, a behavior-based automatic method to analyze the potential effects of different types of bugs is desirable. Such a method could be used to automatically build an FMEA report about the fault effects, or to evaluate different failure mitigation and detection techniques. This paper follows the latter direction, demonstrating the use of a model checking-based automated SW-FMEA approach to evaluate error detection and fault tolerance mechanisms, demonstrated on a case study inspired by safety-critical embedded operating systems
    • 

    corecore