18,664 research outputs found

    Checking experiments for stream X-machines

    Get PDF
    This article is a post-print version of the published article which may be accessed at the link below. Copyright Ā© 2010 Elsevier B.V. All rights reserved.Stream X-machines are a state based formalism that has associated with it a particular development process in which a system is built from trusted components. Testing thus essentially checks that these components have been combined in a correct manner and that the orders in which they can occur are consistent with the specification. Importantly, there are test generation methods that return a checking experiment: a test that is guaranteed to determine correctness as long as the implementation under test (IUT) is functionally equivalent to an unknown element of a given fault domain ĪØ. Previous work has show how three methods for generating checking experiments from a finite state machine (FSM) can be adapted to testing from a stream X-machine. However, there are many other methods for generating checking experiments from an FSM and these have a variety of benefits that correspond to different testing scenarios. This paper shows how any method for generating a checking experiment from an FSM can be adapted to generate a checking experiment for testing an implementation against a stream X-machine. This is the case whether we are testing to check that the IUT is functionally equivalent to a specification or we are testing to check that every trace (input/output sequence) of the IUT is also a trace of a nondeterministic specification. Interestingly, this holds even if the fault domain ĪØ used is not that traditionally associated with testing from a stream X-machine. The results also apply for both deterministic and nondeterministic implementations

    Testing conformance of a deterministic implementation against a non-deterministic stream X-machine

    Get PDF
    Stream X-machines are a formalisation of extended finite state machines that have been used to specify systems. One of the great benefits of using stream X-machines, for the purpose of specification, is the associated test generation technique which produces a test that is guaranteed to determine correctness under certain design for test conditions. This test generation algorithm has recently been extended to the case where the specification is non-deterministic. However, the algorithms for testing from a non-deterministic stream X-machine currently have limitations: either they test for equivalence, rather than conformance or they restrict the source of non-determinism allowed in the specification. This paper introduces a new test generation algorithm that overcomes both of these limitations, for situations where the implementation is known to be deterministic

    Testing timed systems modeled by stream X-machines

    Get PDF
    Stream X-machines have been used to specify real systems where complex data structures. They are a variety of extended finite state machine where a shared memory is used to represent communications between the components of systems. In this paper we introduce an extension of the Stream X-machines formalism in order to specify systems that present temporal requirements. We add time in two different ways. First, we consider that (output) actions take time to be performed. Second, our formalism allows to specify timeouts. Timeouts represent the time a system can wait for the environment to react without changing its internal state. Since timeous affect the set of available actions of the system, a relation focusing on the functional behavior of systems, that is, the actions that they can perform, must explicitly take into account the possible timeouts. In this paper we also propose a formal testing methodology allowing to systematically test a system with respect to a specification. Finally, we introduce a test derivation algorithm. Given a specification, the derived test suite is sound and complete, that is, a system under test successfully passes the test suite if and only if this system conforms to the specification
    • ā€¦
    corecore