8,410 research outputs found

    An ontology enhanced parallel SVM for scalable spam filter training

    Get PDF
    This is the post-print version of the final paper published in Neurocomputing. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2013 Elsevier B.V.Spam, under a variety of shapes and forms, continues to inflict increased damage. Varying approaches including Support Vector Machine (SVM) techniques have been proposed for spam filter training and classification. However, SVM training is a computationally intensive process. This paper presents a MapReduce based parallel SVM algorithm for scalable spam filter training. By distributing, processing and optimizing the subsets of the training data across multiple participating computer nodes, the parallel SVM reduces the training time significantly. Ontology semantics are employed to minimize the impact of accuracy degradation when distributing the training data among a number of SVM classifiers. Experimental results show that ontology based augmentation improves the accuracy level of the parallel SVM beyond the original sequential counterpart

    Scaling DBSCAN-like algorithms for event detection systems in Twitter

    Get PDF
    The increasing use of mobile social networks has lately transformed news media. Real-world events are nowadays reported in social networks much faster than in traditional channels. As a result, the autonomous detection of events from networks like Twitter has gained lot of interest in both research and media groups. DBSCAN-like algorithms constitute a well-known clustering approach to retrospective event detection. However, scaling such algorithms to geographically large regions and temporarily long periods present two major shortcomings. First, detecting real-world events from the vast amount of tweets cannot be performed anymore in a single machine. Second, the tweeting activity varies a lot within these broad space-time regions limiting the use of global parameters. Against this background, we propose to scale DBSCAN-like event detection techniques by parallelizing and distributing them through a novel density-aware MapReduce scheme. The proposed scheme partitions tweet data as per its spatial and temporal features and tailors local DBSCAN parameters to local tweet densities. We implement the scheme in Apache Spark and evaluate its performance in a dataset composed of geo-located tweets in the Iberian peninsula during the course of several football matches. The results pointed out to the benefits of our proposal against other state-of-the-art techniques in terms of speed-up and detection accuracy.Peer ReviewedPostprint (author's final draft
    corecore