39,870 research outputs found

    Testing goodness-of-fit of random graph models

    Get PDF
    Random graphs are matrices with independent 0, 1 elements with probabilities determined by a small number of parameters. One of the oldest model is the Rasch model where the odds are ratios of positive numbers scaling the rows and columns. Later Persi Diaconis with his coworkers rediscovered the model for symmetric matrices and called the model beta. Here we give goodnes-of-fit tests for the model and extend the model to a version of the block model introduced by Holland, Laskey, and Leinhard

    Central limit theorems and statistical inference for some random graph models

    Get PDF
    Random graphs and networks are of great importance in any fields including mathematics, computer science, statistics, biology and sociology. This research aims to develop statistical theory and methods of statistical inference for random graphs in novel directions. A major strand of the research is the development of conditional goodness-of-fit tests for random graph models and for random block graph models. On the theoretical side, this entails proving a new conditional central limit theorem for a certain graph statistics, which are closely related to the number of two-stars and the number of triangles, and where the conditioning is on the number of edges in the graph. A second strand of the research is to develop composite likelihood methods for estimation of the parameters in exponential random graph models. Composite likelihood methods based on edge data have previously been widely used. A novel contribution of the thesis is the development of composite likelihood methods based on more complicated data structures. The goals of this PhD thesis also include testing the numerical performance of the novel methods in extensive simulation studies and through applications to real graphical data sets

    Central limit theorems and statistical inference for some random graph models

    Get PDF
    Random graphs and networks are of great importance in any fields including mathematics, computer science, statistics, biology and sociology. This research aims to develop statistical theory and methods of statistical inference for random graphs in novel directions. A major strand of the research is the development of conditional goodness-of-fit tests for random graph models and for random block graph models. On the theoretical side, this entails proving a new conditional central limit theorem for a certain graph statistics, which are closely related to the number of two-stars and the number of triangles, and where the conditioning is on the number of edges in the graph. A second strand of the research is to develop composite likelihood methods for estimation of the parameters in exponential random graph models. Composite likelihood methods based on edge data have previously been widely used. A novel contribution of the thesis is the development of composite likelihood methods based on more complicated data structures. The goals of this PhD thesis also include testing the numerical performance of the novel methods in extensive simulation studies and through applications to real graphical data sets

    Spectral goodness of fit for network models

    Get PDF
    We introduce a new statistic, 'spectral goodness of fit' (SGOF) to measure how well a network model explains the structure of an observed network. SGOF provides an absolute measure of fit, analogous to the standard R-squared in linear regression. Additionally, as it takes advantage of the properties of the spectrum of the graph Laplacian, it is suitable for comparing network models of diverse functional forms, including both fitted statistical models and algorithmic generative models of networks. After introducing, defining, and providing guidance for interpreting SGOF, we illustrate the properties of the statistic with a number of examples and comparisons to existing techniques. We show that such a spectral approach to assessing model fit fills gaps left by earlier methods and can be widely applied

    Statistical models for cores decomposition of an undirected random graph

    Full text link
    The kk-core decomposition is a widely studied summary statistic that describes a graph's global connectivity structure. In this paper, we move beyond using kk-core decomposition as a tool to summarize a graph and propose using kk-core decomposition as a tool to model random graphs. We propose using the shell distribution vector, a way of summarizing the decomposition, as a sufficient statistic for a family of exponential random graph models. We study the properties and behavior of the model family, implement a Markov chain Monte Carlo algorithm for simulating graphs from the model, implement a direct sampler from the set of graphs with a given shell distribution, and explore the sampling distributions of some of the commonly used complementary statistics as good candidates for heuristic model fitting. These algorithms provide first fundamental steps necessary for solving the following problems: parameter estimation in this ERGM, extending the model to its Bayesian relative, and developing a rigorous methodology for testing goodness of fit of the model and model selection. The methods are applied to a synthetic network as well as the well-known Sampson monks dataset.Comment: Subsection 3.1 is new: `Sample space restriction and degeneracy of real-world networks'. Several clarifying comments have been added. Discussion now mentions 2 additional specific open problems. Bibliography updated. 25 pages (including appendix), ~10 figure
    • …
    corecore