20,977 research outputs found

    Resisting Large Data Variations via Introspective Transformation Network

    Full text link
    Training deep networks that generalize to a wide range of variations in test data is essential to building accurate and robust image classifiers. One standard strategy is to apply data augmentation to synthetically enlarge the training set. However, data augmentation is essentially a brute-force method which generates uniform samples from some pre-defined set of transformations. In this paper, we propose a principled approach to train networks with significantly improved resistance to large variations between training and testing data. This is achieved by embedding a learnable transformation module into the introspective network, which is a convolutional neural network (CNN) classifier empowered with generative capabilities. Our approach alternates between synthesizing pseudo-negative samples and transformed positive examples based on the current model, and optimizing model predictions on these synthesized samples. Experimental results verify that our approach significantly improves the ability of deep networks to resist large variations between training and testing data and achieves classification accuracy improvements on several benchmark datasets, including MNIST, affNIST, SVHN, CIFAR-10 and miniImageNet.Comment: camera-ready version, WACV 202

    Tongue image constitution recognition based on Complexity Perception method

    Full text link
    Background and Object: In China, body constitution is highly related to physiological and pathological functions of human body and determines the tendency of the disease, which is of great importance for treatment in clinical medicine. Tongue diagnosis, as a key part of Traditional Chinese Medicine inspection, is an important way to recognize the type of constitution.In order to deploy tongue image constitution recognition system on non-invasive mobile device to achieve fast, efficient and accurate constitution recognition, an efficient method is required to deal with the challenge of this kind of complex environment. Methods: In this work, we perform the tongue area detection, tongue area calibration and constitution classification using methods which are based on deep convolutional neural network. Subject to the variation of inconstant environmental condition, the distribution of the picture is uneven, which has a bad effect on classification performance. To solve this problem, we propose a method based on the complexity of individual instances to divide dataset into two subsets and classify them separately, which is capable of improving classification accuracy. To evaluate the performance of our proposed method, we conduct experiments on three sizes of tongue datasets, in which deep convolutional neural network method and traditional digital image analysis method are respectively applied to extract features for tongue images. The proposed method is combined with the base classifier Softmax, SVM, and DecisionTree respectively. Results: As the experiments results shown, our proposed method improves the classification accuracy by 1.135% on average and achieves 59.99% constitution classification accuracy. Conclusions: Experimental results on three datasets show that our proposed method can effectively improve the classification accuracy of tongue constitution recognition

    Modified Diversity of Class Probability Estimation Co-training for Hyperspectral Image Classification

    Full text link
    Due to the limited amount and imbalanced classes of labeled training data, the conventional supervised learning can not ensure the discrimination of the learned feature for hyperspectral image (HSI) classification. In this paper, we propose a modified diversity of class probability estimation (MDCPE) with two deep neural networks to learn spectral-spatial feature for HSI classification. In co-training phase, recurrent neural network (RNN) and convolutional neural network (CNN) are utilized as two learners to extract features from labeled and unlabeled data. Based on the extracted features, MDCPE selects most credible samples to update initial labeled data by combining k-means clustering with the traditional diversity of class probability estimation (DCPE) co-training. In this way, MDCPE can keep new labeled data class-balanced and extract discriminative features for both the minority and majority classes. During testing process, classification results are acquired by co-decision of the two learners. Experimental results demonstrate that the proposed semi-supervised co-training method can make full use of unlabeled information to enhance generality of the learners and achieve favorable accuracies on all three widely used data sets: Salinas, Pavia University and Pavia Center.Comment: 13 pages, 10 figures and 8 table

    Offline and Online Deep Learning for Image Recognition

    Full text link
    Image recognition using Deep Learning has been evolved for decades though advances in the field through different settings is still a challenge. In this paper, we present our findings in searching for better image classifiers in offline and online environments. We resort to Convolutional Neural Network and its variations of fully connected Multi-layer Perceptron. Though still preliminary, these results are encouraging and may provide a better understanding about the field and directions toward future works.Comment: 5 page

    p-FP: Extraction, Classification, and Prediction of Website Fingerprints with Deep Learning

    Full text link
    Recent advances in learning Deep Neural Network (DNN) architectures have received a great deal of attention due to their ability to outperform state-of-the-art classifiers across a wide range of applications, with little or no feature engineering. In this paper, we broadly study the applicability of deep learning to website fingerprinting. We show that unsupervised DNNs can be used to extract low-dimensional feature vectors that improve the performance of state-of-the-art website fingerprinting attacks. When used as classifiers, we show that they can match or exceed performance of existing attacks across a range of application scenarios, including fingerprinting Tor website traces, fingerprinting search engine queries over Tor, defeating fingerprinting defenses, and fingerprinting TLS-encrypted websites. Finally, we show that DNNs can be used to predict the fingerprintability of a website based on its contents, achieving 99% accuracy on a data set of 4500 website downloads.Comment: Under submissio

    Dense Adaptive Cascade Forest: A Self Adaptive Deep Ensemble for Classification Problems

    Full text link
    Recent researches have shown that deep forest ensemble achieves a considerable increase in classification accuracy compared with the general ensemble learning methods, especially when the training set is small. In this paper, we take advantage of deep forest ensemble and introduce the Dense Adaptive Cascade Forest (daForest). Our model has a better performance than the original Cascade Forest with three major features: first, we apply SAMME.R boosting algorithm to improve the performance of the model. It guarantees the improvement as the number of layers increases. Second, our model connects each layer to the subsequent ones in a feed-forward fashion, which enhances the capability of the model to resist performance degeneration. Third, we add a hyper-parameters optimization layer before the first classification layer, making our model spend less time to set up and find the optimal hyper-parameters. Experimental results show that daForest performs significantly well, and in some cases, even outperforms neural networks and achieves state-of-the-art results.Comment: 22 pages, 6 figure

    Surface Defect Classification in Real-Time Using Convolutional Neural Networks

    Full text link
    Surface inspection systems are an important application domain for computer vision, as they are used for defect detection and classification in the manufacturing industry. Existing systems use hand-crafted features which require extensive domain knowledge to create. Even though Convolutional neural networks (CNNs) have proven successful in many large-scale challenges, industrial inspection systems have yet barely realized their potential due to two significant challenges: real-time processing speed requirements and specialized narrow domain-specific datasets which are sometimes limited in size. In this paper, we propose CNN models that are specifically designed to handle capacity and real-time speed requirements of surface inspection systems. To train and evaluate our network models, we created a surface image dataset containing more than 22000 labeled images with many types of surface materials and achieved 98.0% accuracy in binary defect classification. To solve the class imbalance problem in our datasets, we introduce neural data augmentation methods which are also applicable to similar domains that suffer from the same problem. Our results show that deep learning based methods are feasible to be used in surface inspection systems and outperform traditional methods in accuracy and inference time by considerable margins.Comment: Supplementary material will follo

    Residual-CNDS for Grand Challenge Scene Dataset

    Full text link
    Increasing depth of convolutional neural networks (CNNs) is a highly promising method of increasing the accuracy of the (CNNs). Increased CNN depth will also result in increased layer count (parameters), leading to a slow backpropagation convergence prone to overfitting. We trained our model (Residual-CNDS) to classify very large-scale scene datasets MIT Places 205, and MIT Places 365-Standard. The outcome result from the two datasets proved our proposed model (Residual-CNDS) effectively handled the slow convergence, overfitting, and degradation. CNNs that include deep supervision (CNDS) add supplementary branches to the deep convolutional neural network in specified layers by calculating vanishing, effectively addressing delayed convergence and overfitting. Nevertheless, (CNDS) does not resolve degradation; hence, we add residual learning to the (CNDS) in certain layers after studying the best place in which to add it. With this approach we overcome degradation in the very deep network. We have built two models (Residual-CNDS 8), and (Residual-CNDS 10). Moreover, we tested our models on two large-scale datasets, and we compared our results with other recently introduced cutting-edge networks in the domain of top-1 and top-5 classification accuracy. As a result, both of models have shown good improvement, which supports the assertion that the addition of residual connections enhances network CNDS accuracy without adding any computation complexity

    Real-Time Document Image Classification using Deep CNN and Extreme Learning Machines

    Full text link
    This paper presents an approach for real-time training and testing for document image classification. In production environments, it is crucial to perform accurate and (time-)efficient training. Existing deep learning approaches for classifying documents do not meet these requirements, as they require much time for training and fine-tuning the deep architectures. Motivated from Computer Vision, we propose a two-stage approach. The first stage trains a deep network that works as feature extractor and in the second stage, Extreme Learning Machines (ELMs) are used for classification. The proposed approach outperforms all previously reported structural and deep learning based methods with a final accuracy of 83.24% on Tobacco-3482 dataset, leading to a relative error reduction of 25% when compared to a previous Convolutional Neural Network (CNN) based approach (DeepDocClassifier). More importantly, the training time of the ELM is only 1.176 seconds and the overall prediction time for 2,482 images is 3.066 seconds. As such, this novel approach makes deep learning-based document classification suitable for large-scale real-time applications

    A Hybrid Deep Learning Approach for Texture Analysis

    Full text link
    Texture classification is a problem that has various applications such as remote sensing and forest species recognition. Solutions tend to be custom fit to the dataset used but fails to generalize. The Convolutional Neural Network (CNN) in combination with Support Vector Machine (SVM) form a robust selection between powerful invariant feature extractor and accurate classifier. The fusion of experts provides stability in classification rates among different datasets
    • …
    corecore