1,622 research outputs found

    Simultaneous Orthogonal Planarity

    Full text link
    We introduce and study the OrthoSEFE−k\textit{OrthoSEFE}-k problem: Given kk planar graphs each with maximum degree 4 and the same vertex set, do they admit an OrthoSEFE, that is, is there an assignment of the vertices to grid points and of the edges to paths on the grid such that the same edges in distinct graphs are assigned the same path and such that the assignment induces a planar orthogonal drawing of each of the kk graphs? We show that the problem is NP-complete for k≄3k \geq 3 even if the shared graph is a Hamiltonian cycle and has sunflower intersection and for k≄2k \geq 2 even if the shared graph consists of a cycle and of isolated vertices. Whereas the problem is polynomial-time solvable for k=2k=2 when the union graph has maximum degree five and the shared graph is biconnected. Further, when the shared graph is biconnected and has sunflower intersection, we show that every positive instance has an OrthoSEFE with at most three bends per edge.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016

    Planarity Variants for Directed Graphs

    Get PDF

    SPQR-tree-like embedding representation for level planarity

    Get PDF
    An SPQR-tree is a data structure that efficiently represents all planar embeddings of a connected planar graph. It is a key tool in a number of constrained planarity testing algorithms, which seek a planar embedding of a graph subject to some given set of constraints. We develop an SPQR-tree-like data structure that represents all level-planar embeddings of a biconnected level graph with a single source, called the LP-tree, and give an algorithm to compute it in linear time. Moreover, we show that LP-trees can be used to adapt three constrained planarity algorithms to the level-planar case by using LP-trees as a drop-in replacement for SPQR-trees

    Recognizing and Drawing IC-planar Graphs

    Full text link
    IC-planar graphs are those graphs that admit a drawing where no two crossed edges share an end-vertex and each edge is crossed at most once. They are a proper subfamily of the 1-planar graphs. Given an embedded IC-planar graph GG with nn vertices, we present an O(n)O(n)-time algorithm that computes a straight-line drawing of GG in quadratic area, and an O(n3)O(n^3)-time algorithm that computes a straight-line drawing of GG with right-angle crossings in exponential area. Both these area requirements are worst-case optimal. We also show that it is NP-complete to test IC-planarity both in the general case and in the case in which a rotation system is fixed for the input graph. Furthermore, we describe a polynomial-time algorithm to test whether a set of matching edges can be added to a triangulated planar graph such that the resulting graph is IC-planar

    Synchronized planarity with applications to constrained planarity problems

    Get PDF
    We introduce the problem Synchronized Planarity. Roughly speaking, its input is a loop-free multi-graph together with synchronization constraints that, e.g., match pairs of vertices of equal degree by providing a bijection between their edges. Synchronized Planarity then asks whether the graph admits a crossing-free embedding into the plane such that the orders of edges around synchronized vertices are consistent. We show, on the one hand, that Synchronized Planarity can be solved in quadratic time, and, on the other hand, that it serves as a powerful modeling language that lets us easily formulate several constrained planarity problems as instances of Synchronized Planarity. In particular, this lets us solve Clustered Planarity in quadratic time, where the most efficient previously known algorithm has an upper bound of O(n⁞)

    Multilevel Planarity

    Get PDF
    In this paper, we introduce and study multilevel planarity, a generalization of upward planarity and level planarity. Let G=(V,E)G = (V, E) be a directed graph and let ℓ:V→P(Z)\ell: V \to \mathcal P(\mathbb Z) be a function that assigns a finite set of integers to each vertex. A multilevel-planar drawing of GG is a planar drawing of GG such that for each vertex v∈Vv\in V its yy-coordinate y(v)y(v) is in ℓ(v)\ell(v), nd each edge is drawn as a strictly yy-monotone curve. We present linear-time algorithms for testing multilevel planarity of embedded graphs with a single source and of oriented cycles. Complementing these algorithmic results, we show that multilevel-planarity testing is NP-complete even in very restricted cases

    Constrained Planarity in Practice -- Engineering the Synchronized Planarity Algorithm

    Full text link
    In the constrained planarity setting, we ask whether a graph admits a planar drawing that additionally satisfies a given set of constraints. These constraints are often derived from very natural problems; prominent examples are Level Planarity, where vertices have to lie on given horizontal lines indicating a hierarchy, and Clustered Planarity, where we additionally draw the boundaries of clusters which recursively group the vertices in a crossing-free manner. Despite receiving significant amount of attention and substantial theoretical progress on these problems, only very few of the found solutions have been put into practice and evaluated experimentally. In this paper, we describe our implementation of the recent quadratic-time algorithm by Bl\"asius et al. [TALG Vol 19, No 4] for solving the problem Synchronized Planarity, which can be seen as a common generalization of several constrained planarity problems, including the aforementioned ones. Our experimental evaluation on an existing benchmark set shows that even our baseline implementation outperforms all competitors by at least an order of magnitude. We systematically investigate the degrees of freedom in the implementation of the Synchronized Planarity algorithm for larger instances and propose several modifications that further improve the performance. Altogether, this allows us to solve instances with up to 100 vertices in milliseconds and instances with up to 100 000 vertices within a few minutes.Comment: to appear in Proceedings of ALENEX 202
    • 

    corecore