1,811 research outputs found

    How Effective are Smart Contract Analysis Tools? Evaluating Smart Contract Static Analysis Tools Using Bug Injection

    Full text link
    Security attacks targeting smart contracts have been on the rise, which have led to financial loss and erosion of trust. Therefore, it is important to enable developers to discover security vulnerabilities in smart contracts before deployment. A number of static analysis tools have been developed for finding security bugs in smart contracts. However, despite the numerous bug-finding tools, there is no systematic approach to evaluate the proposed tools and gauge their effectiveness. This paper proposes SolidiFI, an automated and systematic approach for evaluating smart contract static analysis tools. SolidiFI is based on injecting bugs (i.e., code defects) into all potential locations in a smart contract to introduce targeted security vulnerabilities. SolidiFI then checks the generated buggy contract using the static analysis tools, and identifies the bugs that the tools are unable to detect (false-negatives) along with identifying the bugs reported as false-positives. SolidiFI is used to evaluate six widely-used static analysis tools, namely, Oyente, Securify, Mythril, SmartCheck, Manticore and Slither, using a set of 50 contracts injected by 9369 distinct bugs. It finds several instances of bugs that are not detected by the evaluated tools despite their claims of being able to detect such bugs, and all the tools report many false positivesComment: ISSTA 202

    Injecting software faults in Python applications

    Get PDF
    As técnicas de injeção de falhas de software têm sido amplamente utilizadas como meio para avaliar a confiabilidade de sistemas na presença de certos tipos de falhas. Apesar da grande diversidade de ferramentas que oferecem a possibilidade de emular a presença de falhas de software, há pouco suporte prático para emular a presença de falhas de soft ware em aplicações Python, que cada vez mais são usados para suportar serviços cloud críticos para negócios. Nesta tese, apresentamos uma ferramenta (de nome Fit4Python) para injetar falhas de software em código Python e, de seguida, usamo-la para analisar a eficácia da bateria de testes do OpenStack contra estas novas, prováveis, falhas de software. Começamos por analisar os tipos de falhas que afetam o Nova Compute, um componente central do OpenStack. Usamos a nossa ferramenta para emular a presença de novas falhas na API Nova Compute de forma a entender como a bateria de testes unitários, funcionais e de integração do OpenStack cobre essas novas, mas prováveis, situações. Os resultados mostram limitações claras na eficácia da bateria de testes dos programadores do Open Stack, com muitos casos de falhas injetadas a passarem sem serem detectadas por todos os três tipos de testes. Para além disto, observamos que que a maioria dos problemas analisados poderia ser detectada com mudanças ou acréscimos triviais aos testes unitários

    Semantic mutation testing

    Get PDF
    This is the Pre-print version of the Article. The official published version can be obtained from the link below - Copyright @ 2011 ElsevierMutation testing is a powerful and flexible test technique. Traditional mutation testing makes a small change to the syntax of a description (usually a program) in order to create a mutant. A test suite is considered to be good if it distinguishes between the original description and all of the (functionally non-equivalent) mutants. These mutants can be seen as representing potential small slips and thus mutation testing aims to produce a test suite that is good at finding such slips. It has also been argued that a test suite that finds such small changes is likely to find larger changes. This paper describes a new approach to mutation testing, called semantic mutation testing. Rather than mutate the description, semantic mutation testing mutates the semantics of the language in which the description is written. The mutations of the semantics of the language represent possible misunderstandings of the description language and thus capture a different class of faults. Since the likely misunderstandings are highly context dependent, this context should be used to determine which semantic mutants should be produced. The approach is illustrated through examples with statecharts and C code. The paper also describes a semantic mutation testing tool for C and the results of experiments that investigated the nature of some semantic mutation operators for C

    Automatic Software Repair: a Bibliography

    Get PDF
    This article presents a survey on automatic software repair. Automatic software repair consists of automatically finding a solution to software bugs without human intervention. This article considers all kinds of repairs. First, it discusses behavioral repair where test suites, contracts, models, and crashing inputs are taken as oracle. Second, it discusses state repair, also known as runtime repair or runtime recovery, with techniques such as checkpoint and restart, reconfiguration, and invariant restoration. The uniqueness of this article is that it spans the research communities that contribute to this body of knowledge: software engineering, dependability, operating systems, programming languages, and security. It provides a novel and structured overview of the diversity of bug oracles and repair operators used in the literature
    • …
    corecore