275,959 research outputs found

    Penanganan Anak Berkesulitan Belajar Berbasis Akomodasi Pembelajaran

    Get PDF
    The general objective of this study is to create a model of treatment for children with learning difficulties (CLD) by accommodation-based learning with elements: (1) material and techniques of instruction; (2) assignment and evaluation; (3) time demand and schedules; and (4) evironment of learning. The specific objective of this study is to create an accommodation-based treatment manual for CLD to: (1) provide educational services and instruction for CLD; (2) improve teachers\u27 knowledge and awareness of the importance of learning accomodation for CLD; and (3) increase the learning avchievement of CLD. This study is research and development. Data collection is conducted through the Delphi technique, focus group discussion (FGD), questionnaire, observation, interview, and documentation. Data analysis is descriptive. The findings show that: (1) In the first years: (a) CLD treatment has not been adequately performed; it means that the exact solution has not been found out in learning accommodation for CLD; (b) teachers\u27 perception and expectation on learning problems of CLD have not been quite positive; (c) the prototype of CLD treatment based on learning accommodation has been limitedly to test-driven and can be developed as a model of treatment for CLD in the elementary school. Its implementation is based on a manual of learning accommodation application for CLD. (2) In the second years, the model and product have been validated through the main field testing and operational field testing; and stated as a fit and effective model of CLD treatment in the elementary school. The effectiveness of the accommodation learning treatment is evident from indicators that the elementery school teachers have applied the model and product found in the manual books for CLD instructional flexibilities. In addition, the application of the model has improved the (a) learning motivation; (b) social interaction; and (c) academic achievement of CL

    An Efficient Quantum Algorithm for some Instances of the Group Isomorphism Problem

    Full text link
    In this paper we consider the problem of testing whether two finite groups are isomorphic. Whereas the case where both groups are abelian is well understood and can be solved efficiently, very little is known about the complexity of isomorphism testing for nonabelian groups. Le Gall has constructed an efficient classical algorithm for a class of groups corresponding to one of the most natural ways of constructing nonabelian groups from abelian groups: the groups that are extensions of an abelian group AA by a cyclic group ZmZ_m with the order of AA coprime with mm. More precisely, the running time of that algorithm is almost linear in the order of the input groups. In this paper we present a quantum algorithm solving the same problem in time polynomial in the logarithm of the order of the input groups. This algorithm works in the black-box setting and is the first quantum algorithm solving instances of the nonabelian group isomorphism problem exponentially faster than the best known classical algorithms.Comment: 20 pages; this is the full version of a paper that will appear in the Proceedings of the 27th International Symposium on Theoretical Aspects of Computer Science (STACS 2010

    Efficient algorithms for conditional independence inference

    Get PDF
    The topic of the paper is computer testing of (probabilistic) conditional independence (CI) implications by an algebraic method of structural imsets. The basic idea is to transform (sets of) CI statements into certain integral vectors and to verify by a computer the corresponding algebraic relation between the vectors, called the independence implication. We interpret the previous methods for computer testing of this implication from the point of view of polyhedral geometry. However, the main contribution of the paper is a new method, based on linear programming (LP). The new method overcomes the limitation of former methods to the number of involved variables. We recall/describe the theoretical basis for all four methods involved in our computational experiments, whose aim was to compare the efficiency of the algorithms. The experiments show that the LP method is clearly the fastest one. As an example of possible application of such algorithms we show that testing inclusion of Bayesian network structures or whether a CI statement is encoded in an acyclic directed graph can be done by the algebraic method

    Algorithms for group isomorphism via group extensions and cohomology

    Full text link
    The isomorphism problem for finite groups of order n (GpI) has long been known to be solvable in nlogn+O(1)n^{\log n+O(1)} time, but only recently were polynomial-time algorithms designed for several interesting group classes. Inspired by recent progress, we revisit the strategy for GpI via the extension theory of groups. The extension theory describes how a normal subgroup N is related to G/N via G, and this naturally leads to a divide-and-conquer strategy that splits GpI into two subproblems: one regarding group actions on other groups, and one regarding group cohomology. When the normal subgroup N is abelian, this strategy is well-known. Our first contribution is to extend this strategy to handle the case when N is not necessarily abelian. This allows us to provide a unified explanation of all recent polynomial-time algorithms for special group classes. Guided by this strategy, to make further progress on GpI, we consider central-radical groups, proposed in Babai et al. (SODA 2011): the class of groups such that G mod its center has no abelian normal subgroups. This class is a natural extension of the group class considered by Babai et al. (ICALP 2012), namely those groups with no abelian normal subgroups. Following the above strategy, we solve GpI in nO(loglogn)n^{O(\log \log n)} time for central-radical groups, and in polynomial time for several prominent subclasses of central-radical groups. We also solve GpI in nO(loglogn)n^{O(\log\log n)} time for groups whose solvable normal subgroups are elementary abelian but not necessarily central. As far as we are aware, this is the first time there have been worst-case guarantees on a no(logn)n^{o(\log n)}-time algorithm that tackles both aspects of GpI---actions and cohomology---simultaneously.Comment: 54 pages + 14-page appendix. Significantly improved presentation, with some new result

    Lessons in Reading Reform: Finding What Works

    Get PDF
    Evaluates elements of reforms designed to improve reading scores among students identified as lagging behind, including extended-length English classes and school years. Considers the role of teachers' experience, lessons learned, and policy implications

    On Termination for Faulty Channel Machines

    Get PDF
    A channel machine consists of a finite controller together with several fifo channels; the controller can read messages from the head of a channel and write messages to the tail of a channel. In this paper, we focus on channel machines with insertion errors, i.e., machines in whose channels messages can spontaneously appear. Such devices have been previously introduced in the study of Metric Temporal Logic. We consider the termination problem: are all the computations of a given insertion channel machine finite? We show that this problem has non-elementary, yet primitive recursive complexity

    Efficient quantum algorithms for some instances of the non-Abelian hidden subgroup problem

    Get PDF
    In this paper we show that certain special cases of the hidden subgroup problem can be solved in polynomial time by a quantum algorithm. These special cases involve finding hidden normal subgroups of solvable groups and permutation groups, finding hidden subgroups of groups with small commutator subgroup and of groups admitting an elementary Abelian normal 2-subgroup of small index or with cyclic factor group.Comment: 10 page
    corecore