353 research outputs found

    Building the Future Internet through FIRE

    Get PDF
    The Internet as we know it today is the result of a continuous activity for improving network communications, end user services, computational processes and also information technology infrastructures. The Internet has become a critical infrastructure for the human-being by offering complex networking services and end-user applications that all together have transformed all aspects, mainly economical, of our lives. Recently, with the advent of new paradigms and the progress in wireless technology, sensor networks and information systems and also the inexorable shift towards everything connected paradigm, first as known as the Internet of Things and lately envisioning into the Internet of Everything, a data-driven society has been created. In a data-driven society, productivity, knowledge, and experience are dependent on increasingly open, dynamic, interdependent and complex Internet services. The challenge for the Internet of the Future design is to build robust enabling technologies, implement and deploy adaptive systems, to create business opportunities considering increasing uncertainties and emergent systemic behaviors where humans and machines seamlessly cooperate

    Quantifying DDS-cerberus Network Control Overhead

    Get PDF
    Securing distributed device communication is critical because the private industry and the military depend on these resources. One area that adversaries target is the middleware, which is the medium that connects different systems. This paper evaluates a novel security layer, DDS-Cerberus (DDS-C), that protects in-transit data and improves communication efficiency on data-first distribution systems. This research contributes a distributed robotics operating system testbed and designs a multifactorial performance-based experiment to evaluate DDS-C efficiency and security by assessing total packet traffic generated in a robotics network. The performance experiment follows a 2:1 publisher to subscriber node ratio, varying the number of subscribers and publisher nodes from three to eighteen. By categorizing the network traffic from these nodes into either data message, security, or discovery+ with Quality of Service (QoS) best effort and reliable, the mean security traffic from DDS-C has minimal impact to Data Distribution Service (DDS) operations compared to other network traffic. The results reveal that applying DDS-C to a representative distributed network robotics operating system network does not impact performance

    Building the Future Internet through FIRE

    Get PDF
    The Internet as we know it today is the result of a continuous activity for improving network communications, end user services, computational processes and also information technology infrastructures. The Internet has become a critical infrastructure for the human-being by offering complex networking services and end-user applications that all together have transformed all aspects, mainly economical, of our lives. Recently, with the advent of new paradigms and the progress in wireless technology, sensor networks and information systems and also the inexorable shift towards everything connected paradigm, first as known as the Internet of Things and lately envisioning into the Internet of Everything, a data-driven society has been created. In a data-driven society, productivity, knowledge, and experience are dependent on increasingly open, dynamic, interdependent and complex Internet services. The challenge for the Internet of the Future design is to build robust enabling technologies, implement and deploy adaptive systems, to create business opportunities considering increasing uncertainties and emergent systemic behaviors where humans and machines seamlessly cooperate

    How far can we go? Towards Realistic Software-Defined Wireless Networking Experiments

    Get PDF
    International audienceSoftware-Defined Wireless Networking (SDWN) is an emerging approach based on decoupling radio control functions from the radio data plane through programmatic interfaces. Despite diverse ongoing efforts to realize the vision of SDWN, many questions remain open from multiple perspectives such as means to rapid prototype and experiment candidate software solutions applicable to real world deployments. To this end, emulation of SDWN has the potential to boost research and development efforts by re-using existing protocol and application stacks while mimicking the behavior of real wireless networks. In this article, we provide an in-depth discussion on that matter focusing on the Mininet-WiFi emulator design to fill a gap in the experimental platform space. We showcase the applicability of our emulator in an SDN wireless context by illustrating the support of a number of use cases aiming to address the question on how far we can go in realistic SDWN experiments, including comparisons to the results obtained in a wireless testbed. Finally, we discuss the ability to replay packet-level and radio signal traces captured in the real testbed towards a virtual yet realistic emulation environment in support of SDWN research

    Architectures for the Future Networks and the Next Generation Internet: A Survey

    Get PDF
    Networking research funding agencies in the USA, Europe, Japan, and other countries are encouraging research on revolutionary networking architectures that may or may not be bound by the restrictions of the current TCP/IP based Internet. We present a comprehensive survey of such research projects and activities. The topics covered include various testbeds for experimentations for new architectures, new security mechanisms, content delivery mechanisms, management and control frameworks, service architectures, and routing mechanisms. Delay/Disruption tolerant networks, which allow communications even when complete end-to-end path is not available, are also discussed
    corecore