78 research outputs found

    Design and Performance Analysis of Genetic Algorithms for Topology Control Problems

    Full text link
    In this dissertation, we present a bio-inspired decentralized topology control mechanism, called force-based genetic algorithm (FGA), where a genetic algorithm (GA) is run by each autonomous mobile node to achieve a uniform spread of mobile nodes and to provide a fully connected network over an unknown area. We present a formal analysis of FGA in terms of convergence speed, uniformity at area coverage, and Lyapunov stability theorem. This dissertation emphasizes the use of mobile nodes to achieve a uniform distribution over an unknown terrain without a priori information and a central control unit. In contrast, each mobile node running our FGA has to make its own movement direction and speed decisions based on local neighborhood information, such as obstacles and the number of neighbors, without a centralized control unit or global knowledge. We have implemented simulation software in Java and developed four different testbeds to study the effectiveness of different GA-based topology control frameworks for network performance metrics including node density, speed, and the number of generations that GAs run. The stochastic behavior of FGA, like all GA-based approaches, makes it difficult to analyze its convergence speed. We built metrically transitive homogeneous and inhomogeneous Markov chain models to analyze the convergence of our FGA with respect to the communication ranges of mobile nodes and the total number of nodes in the system. The Dobrushin contraction coefficient of ergodicity is used for measuring convergence speed for homogeneous and inhomogeneous Markov chain models of our FGA. Furthermore, convergence characteristic analysis helps us to choose the nearoptimal values for communication range, the number of mobile nodes, and the mean node degree before sending autonomous mobile nodes to any mission. Our analytical and experimental results show that our FGA delivers promising results for uniform mobile node distribution over unknown terrains. Since our FGA adapts to local environment rapidly and does not require global network knowledge, it can be used as a real-time topology controller for commercial and military applications

    A survey of flooding, gossip routing, and related schemes for wireless multi- hop networks

    Get PDF
    Flooding is an essential and critical service in computer networks that is used by many routing protocols to send packets from a source to all nodes in the network. As the packets are forwarded once by each receiving node, many copies of the same packet traverse the network which leads to high redundancy and unnecessary usage of the sparse capacity of the transmission medium. Gossip routing is a well-known approach to improve the flooding in wireless multi-hop networks. Each node has a forwarding probability p that is either statically per-configured or determined by information that is available at runtime, e.g, the node degree. When a packet is received, the node selects a random number r. If the number r is below p, the packet is forwarded and otherwise, in the most simple gossip routing protocol, dropped. With this approach the redundancy can be reduced while at the same time the reachability is preserved if the value of the parameter p (and others) is chosen with consideration of the network topology. This technical report gives an overview of the relevant publications in the research domain of gossip routing and gives an insight in the improvements that can be achieved. We discuss the simulation setups and results of gossip routing protocols as well as further improved flooding schemes. The three most important metrics in this application domain are elaborated: reachability, redundancy, and management overhead. The published studies used simulation environments for their research and thus the assumptions, models, and parameters of the simulations are discussed and the feasibility of an application for real world wireless networks are highlighted. Wireless mesh networks based on IEEE 802.11 are the focus of this survey but publications about other network types and technologies are also included. As percolation theory, epidemiological models, and delay tolerant networks are often referred as foundation, inspiration, or application of gossip routing in wireless networks, a brief introduction to each research domain is included and the applicability of the particular models for the gossip routing is discussed

    Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks

    Get PDF
    This book presents collective works published in the recent Special Issue (SI) entitled "Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks”. These works expose the readership to the latest solutions and techniques for MANETs and VANETs. They cover interesting topics such as power-aware optimization solutions for MANETs, data dissemination in VANETs, adaptive multi-hop broadcast schemes for VANETs, multi-metric routing protocols for VANETs, and incentive mechanisms to encourage the distribution of information in VANETs. The book demonstrates pioneering work in these fields, investigates novel solutions and methods, and discusses future trends in these field

    Machine Learning across the WSN Layers

    Get PDF

    ANTMANET: a novel routing protocol for mobile ad-hoc networks based on ant colony optimisation

    Get PDF
    The core aim of this research is to present “ANTMANET” a novel routing protocol for Mobile Ad-Hoc networks. The proposed protocol aims to reduce the network overhead and delay introduced by node mobility in MANETs. There are two techniques embedded in this protocol, the “Local Zone” technique and the “North Neighbour” Table. They take an advantage of the fact that the nodes can obtain their location information by any means to reduce the network overhead during the route discovery phase and reduced the size of the routing table to guarantee faster convergence. ANTMANET is a hybrid Ant Colony Optimisation-based (ACO) routing protocol. ACO is a Swarm Intelligence (SI) routing algorithm that is well known for its high-quality performance compared to other distributed routing algorithms such as Link State and Distance Vector. ANTMANET has been benchmarked in various scenarios against the ACO routing protocol ANTHOCNET and several standard routing protocols including the Ad-Hoc On-Demand Distance Vector (AODV), Landmark Ad-Hoc Routing (LANMAR), and Dynamic MANET on Demand (DYMO). Performance metrics such as overhead, end-to-end delay, throughputs and jitter were used to evaluate ANTMANET performance. Experiments were performed using the QualNet simulator. A benchmark test was conducted to evaluate the performance of an ANTMANET network against an ANTHOCNET network, with both protocols benchmarked against AODV as an established MANET protocol. ANTMANET has demonstrated a notable performance edge when the core algorithm has been optimised using the novel adaptation method that is proposed in this thesis. Based on the simulation results, the proposed protocol has shown 5% less End-to-End delay than ANTHOCNET. In regard to network overhead, the proposed protocol has shown 20% less overhead than ANTHOCNET. In terms of comparative throughputs ANTMANET in its finest performance has delivered 25% more packets than ANTHOCNET. The overall validation results indicate that the proposed protocol was successful in reducing the network overhead and delay in high and low mobility speeds when compared with the AODV, DMO and LANMAR protocols. ANTMANET achieved at least a 45% less delay than AODV, 60% less delay than DYMO and 55% less delay than LANMAR. In terms of throughputs; ANTMANET in its best performance has delivered 35% more packets than AODV, 40% more than DYMO and 45% more than LANMAR. With respect to the network overhead results, ANTMANET has illustrated 65% less overhead than AODV, 70% less than DYMO and 60 % less than LANMAR. Regarding the Jitter, ANTMANET at its best has shown 60% less jitter than AODV, 55% jitter less than DYMO and 50% less jitter than LANMAR

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms
    • 

    corecore