982 research outputs found

    Smoothed Airtime Linear Tuning and Optimized REACT with Multi-hop Extensions

    Get PDF
    abstract: Medium access control (MAC) is a fundamental problem in wireless networks. In ad-hoc wireless networks especially, many of the performance and scaling issues these networks face can be attributed to their use of the core IEEE 802.11 MAC protocol: distributed coordination function (DCF). Smoothed Airtime Linear Tuning (SALT) is a new contention window tuning algorithm proposed to address some of the deficiencies of DCF in 802.11 ad-hoc networks. SALT works alongside a new user level and optimized implementation of REACT, a distributed resource allocation protocol, to ensure that each node secures the amount of airtime allocated to it by REACT. The algorithm accomplishes that by tuning the contention window size parameter that is part of the 802.11 backoff process. SALT converges more tightly on airtime allocations than a contention window tuning algorithm from previous work and this increases fairness in transmission opportunities and reduces jitter more than either 802.11 DCF or the other tuning algorithm. REACT and SALT were also extended to the multi-hop flow scenario with the introduction of a new airtime reservation algorithm. With a reservation in place multi-hop TCP throughput actually increased when running SALT and REACT as compared to 802.11 DCF, and the combination of protocols still managed to maintain its fairness and jitter advantages. All experiments were performed on a wireless testbed, not in simulation.Dissertation/ThesisMasters Thesis Computer Science 201

    To mesh or not to mesh: flexible wireless indoor communication among mobile robots in industrial environments

    Get PDF
    Mobile robots such as automated guided vehicles become increasingly important in industry as they can greatly increase efficiency. For their operation such robots must rely on wireless communication, typically realized by connecting them to an existing enterprise network. In this paper we motivate that such an approach is not always economically viable or might result in performance issues. Therefore we propose a flexible and configurable mixed architecture that leverages on mesh capabilities whenever appropriate. Through experiments on a wireless testbed for a variety of scenarios, we analyse the impact of roaming, mobility and traffic separation and demonstrate the potential of our approach

    Mesh networks for handheld mobile devices

    Get PDF
    Mesh communications emerge today as a very popular networking solution. Mesh networks have a decentralized and multihop design. These characteristics arouse interest in research for relevant novel features, such as cooperation among nodes, distribution of tasks, scalability, communication with limited infrastructure support, and the support of mobile devices as mesh nodes. In addition to the inexistence of a solution that implements mesh networks with mobile devices at the data link layer (Layer 2), there is also a need to reconsider existing metrics with new information to tackle the intrinsic characteristics of mobile devices, e.g., the limited energy resources of their battery. To tackle this problem, this thesis presents a detailed study about projects, routing protocols and metrics developed in the area of mesh networks. In addition, two data link layer solutions, Open802.11s and B.A.T.M.A.N-advanced, have been adapted and deployed in a real mesh network testbed with off the shelf routers devices installed with a customized operating system. From this testbed, Open802.11s has proved to offer better performance than B.A.T.M.A.N-advanced. Following this, a breakthrough in this work has been the integration of the 802.11s on an Android mobile device and its subsequent incorporation in the mesh network. This allowed the study of eventual limitations imposed by the mobile device on the operation of the mesh network, namely performance and energy scarcity. With this, another major novelty has followed, by designing, implementing and evaluating several energy related metrics regarding the battery status of mobile devices. This has enabled the participation of mobile devices in mesh routing paths in an efficient way. Our main objective was to implement a mesh network with mobile devices. This has been achieved and validated through the evaluation of diverse testing scenarios performed in a real mesh testbed. The obtained results also show that the operation of a mesh with mobile devices can be enhanced, including the lifetime of mobile devices, when an energy-aware metric is used.As redes mesh surgem hoje em dia como uma solução de rede em crescimento e expansão. Neste tipo de redes o comportamento entre os nós é descentralizado e numa topologia de multihop. Estas características despertam interesse na pesquisa e desenvolvimento de novas funcionalidades tais como: cooperação entre nós, distribuição de tarefas, escalabilidade da rede e comunicações mesmo em casos de uma infraestrutura limitada e o suporte de dispositivos móveis como nós de uma rede mesh. Associado à inexistência de um projecto que implemente redes mesh em dispositivos móveis na camada de ligação de dados (Layer 2), surge a necessidade de repensar as métricas já existentes com novas informações que façam face às novas características dos dispositivos móveis, neste caso, os recursos limitados de bateria. Por forma a resolver este problema, este trabalho apresenta um estudo detalhado sobre os projetos, protocolos de routing e métricas desenvolvidas na área das redes mesh. Além disso, duas soluções que utilizam a camada de ligação de dados, Open802.11s e BATMAN-advanced, estes foram adaptadao e implementados num testbed real utilizando routers com um sistema operacional costumizado instalado. Deste testbed, concluiu-se que o Open802.11s obtem um melhor desempenho que o BATMAN-advanced. Assim, um dos avanços deste trabalho foi a integração do Open802.11s num dispositivo móvel Android e sua posterior incorporação na rede mesh. Isto permitiu o estudo de eventuais limitações impostas pelo dispositivo móvel ao funcionar numa rede mesh, ou seja, desempenho e a escassez de energia. Com isso, foi concebida outra novidade, através da concepção, avaliação e implementação de várias métricas relacionadas com a energia e que têm por base o estado da bateria do dispositivo. Isto permitiu que os dispositivos móveis participem na rede mesh e a sua gestão de bateria seja feita de forma eficiente. O principal objectivo era a implementação de uma rede mesh com dispositivos móveis. Este foi alcançado e validado através de diversos cenários de teste reais. Os resultados obtidos demonstram também que o funcionamento de uma rede mesh com dispositivos móveis pode ser melhorada, incluindo o tempo de vida dos dispositivos móveis, quando uma métrica que considera a energia é utilizada

    Let the Tree Bloom: Scalable Opportunistic Routing with ORPL

    Get PDF
    Routing in battery-operated wireless networks is challenging, posing a tradeoff between energy and latency. Previous work has shown that opportunistic routing can achieve low-latency data collection in duty-cycled networks. However, applications are now considered where nodes are not only periodic data sources, but rather addressable end points generating traffic with arbitrary patterns. We present ORPL, an opportunistic routing protocol that supports any-to-any, on-demand traffic. ORPL builds upon RPL, the standard protocol for low-power IPv6 networks. By combining RPL's tree-like topology with opportunistic routing, ORPL forwards data to any destination based on the mere knowledge of the nodes' sub-tree. We use bitmaps and Bloom filters to represent and propagate this information in a space-efficient way, making ORPL scale to large networks of addressable nodes. Our results in a 135-node testbed show that ORPL outperforms a number of state-of-the-art solutions including RPL and CTP, conciliating a sub-second latency and a sub-percent duty cycle. ORPL also increases robustness and scalability, addressing the whole network reliably through a 64-byte Bloom filter, where RPL needs kilobytes of routing tables for the same task

    High Performance Wireless Sensor-Actuator Networks for Industrial Internet of Things

    Get PDF
    Wireless Sensor-Actuator Networks (WSANs) enable cost-effective communication for Industrial Internet of Things (IIoT). To achieve predictability and reliability demanded by industrial applications, industrial wireless standards (e.g., WirelessHART) incorporate a set of unique features such as a centralized management architecture, Time Slotted Channel Hopping (TSCH), and conservative channel selection. However, those features also incur significant degradation in performance, efficiency, and agility. To overcome these key limitations of existing industrial wireless technologies, this thesis work develops and empirically evaluates a suite of novel network protocols and algorithms. The primary contributions of this thesis are four-fold. (1) We first build an experimental testbed realizing key features of the WirelessHART protocol stack, and perform a series of empirical studies to uncover the limitations and potential improvements of existing network features. (2) We then investigate the impacts of the industrial WSAN protocol’s channel selection mechanism on routing and real-time performance, and present new channel and link selection strategies that improve route diversity and real-time performance. (3) To further enhance performance, we propose and design conservative channel reuse, a novel approach to support concurrent transmissions in a same wireless channel while maintaining a high degree of reliability. (4) Lastly, to address the limitation of the centralized architecture in handling network dynamics, we develop REACT, a Reliable, Efficient, and Adaptive Control Plane for centralized network management. REACT is designed to reduce the latency and energy cost of network reconfiguration by incorporating a reconfiguration planner to reduce a rescheduling cost, and an update engine providing efficient and reliable mechanisms to support schedule reconfiguration. All the network protocols and algorithms developed in this thesis have been empirically evaluated on the wireless testbed. This thesis represents a step toward next-generation IIoT for industrial automation that demands high-performance and agile wireless communication
    • …
    corecore