2,611 research outputs found

    Test exploration and validation using transaction level models

    Get PDF
    The complexity of the test infrastructure and test strategies in systems-on-chip approaches the complexity of the functional design space. This paper presents test design space exploration and validation of test strategies and schedules using transaction level models (TLMs). Since many aspects of testing involve the transfer of a significant amount of test stimuli and responses, the communication-centric view of TLMs suits this purpose exceptionally wel

    Designing and evaluating the usability of a machine learning API for rapid prototyping music technology

    Get PDF
    To better support creative software developers and music technologists' needs, and to empower them as machine learning users and innovators, the usability of and developer experience with machine learning tools must be considered and better understood. We review background research on the design and evaluation of application programming interfaces (APIs), with a focus on the domain of machine learning for music technology software development. We present the design rationale for the RAPID-MIX API, an easy-to-use API for rapid prototyping with interactive machine learning, and a usability evaluation study with software developers of music technology. A cognitive dimensions questionnaire was designed and delivered to a group of 12 participants who used the RAPID-MIX API in their software projects, including people who developed systems for personal use and professionals developing software products for music and creative technology companies. The results from the questionnaire indicate that participants found the RAPID-MIX API a machine learning API which is easy to learn and use, fun, and good for rapid prototyping with interactive machine learning. Based on these findings, we present an analysis and characterization of the RAPID-MIX API based on the cognitive dimensions framework, and discuss its design trade-offs and usability issues. We use these insights and our design experience to provide design recommendations for ML APIs for rapid prototyping of music technology. We conclude with a summary of the main insights, a discussion of the merits and challenges of the application of the CDs framework to the evaluation of machine learning APIs, and directions to future work which our research deems valuable

    Design for diagnostics and prognostics:a physical- functional approach

    Get PDF

    Value-Driven Analysis of New Paradigms in Space Architectures: An Ilities-Based Approach

    Get PDF
    Current commercial, civil, and military space architecture designs perform exquisitely and reliably. However, today’s architecture paradigms are also characterized by expensive launches, large and expensive high-performance spacecraft, long development cycles, and wide variations in ground architectures. While current assets provide high-quality services, and future assets are slated to improve performance within the same design frameworks, proposed future architectures may not be capitalizing on technology improvements, system innovations, or policy alternatives explored during the last two decades. This paper identifies five “trends” along which space architectures may develop, aimed at granting systems several “ilities,” such as resiliency, robustness, flexibility, scalability, and affordability. The trends examined include: commercialization of space, significant reductions in launch costs and the development of hybrid or reusable launch systems, development of on-orbit infrastructure and servicing, aggregation or disaggregation of orbital assets, and the automation and standardization of ground architectures. Further refinement of these key technological and system trends could result in major paradigm shifts in the development and fielding of space operations as well as lead to space architecture designs in the future that are radically different from those today. Within the framework of systems engineering ilities and risk management, this paper reviews current literature surrounding these new change trends and justifies their potential to cause significant paradigm shifts. By examining the work and research conducted so far through an ilities-based approach, systems engineers can more fully appreciate the value being offered by these trends

    Lessons Learned on Implementing Fault Detection, Isolation, and Recovery (FDIR) in a Ground Launch Environment

    Get PDF
    This paper's main purpose is to detail issues and lessons learned regarding designing, integrating, and implementing Fault Detection Isolation and Recovery (FDIR) for Constellation Exploration Program (CxP) Ground Operations at Kennedy Space Center (KSC)

    Custom Integrated Circuits

    Get PDF
    Contains reports on ten research projects.Analog Devices, Inc.IBM CorporationNational Science Foundation/Defense Advanced Research Projects Agency Grant MIP 88-14612Analog Devices Career Development Assistant ProfessorshipU.S. Navy - Office of Naval Research Contract N0014-87-K-0825AT&TDigital Equipment CorporationNational Science Foundation Grant MIP 88-5876

    Reactive Microservices - An Experiment

    Get PDF
    Os microserviços são geralmente adotados quando a escalabilidade e flexibilidade de uma aplicação são essenciais para o seu sucesso. Apesar disto, as dependências entre serviços transmitidos através de protocolos síncronos, resultam numa única falha que pode afetar múltiplos microserviços. A adoção da capacidade de resposta numa arquitetura baseada em microserviços, através da reatividade, pode facilitar e minimizar a proliferação de erros entre serviços e na comunicação entre eles, ao dar prioridade à capacidade de resposta e à resiliência de um serviço. Esta dissertação fornece uma visão geral do estado da arte dos microserviços reativos, estruturada através de um processo de mapeamento sistemático, onde são analisados os seus atributos de qualidade mais importantes, os seus erros mais comuns, as métricas mais adequadas para a sua avaliação, e as frameworks mais relevantes. Com a informação recolhida, é apresentado o valor deste trabalho, onde a decisão do projeto e a framework a utilizar são tomadas, através da técnica de preferência de ordem por semelhança com a solução ideal e o processo de hierarquia analítica, respetivamente. Em seguida, é realizada a análise e o desenho da solução, para o respetivo projeto, onde se destacam as alterações arquiteturais necessárias para o converter num projeto de microserviços reativo. Em seguida, descreve-se a implementação da solução, começando pela configuração do projeto necessária para agilizar o processo de desenvolvimento, seguida dos principais detalhes de implementação utilizados para assegurar a reatividade e como a framework apoia e simplifica a sua implementação, finalizada pela configuração das ferramentas de métricas no projeto para apoiar os testes e a avaliação da solução. Em seguida, a validação da solução é investigada e executada com base na abordagem Goals, Questions, Metrics (GQM), para estruturar a sua análise relativamente à manutenção, escalabilidade, desempenho, testabilidade, disponibilidade, monitorabilidade e segurança, finalizada pela conclusão do trabalho global realizado, onde são listadas as contribuições, ameaças à validade e possíveis trabalhos futuros.Microservices are generally adopted when the scalability and flexibility of an application are essential to its success. Despite this, dependencies between services transmitted through synchronous protocols result in one failure, potentially affecting multiple microservices. The adoption of responsiveness in a microservices-based architecture, through reactivity, can facilitate and minimize the proliferation of errors between services and in the communication between them by prioritizing the responsiveness and resilience of a service. This dissertation provides an overview of the reactive microservices state of the art, structured through a systematic mapping process, where its most important quality attributes, pitfalls, metrics, and most relevant frameworks are analysed. With the gathered information, the value of this work is presented, where the project and framework decision are made through the technique of order preference by similarity to the ideal solution and the analytic hierarchy process, respectively. Then, the analysis and design of the solution are idealized for the respective project, where the necessary architectural changes are highlighted to convert it to a reactive microservices project. Next, the solution implementation is described, starting with the necessary project setup to speed up the development process, followed by the key implementation details employed to ensure reactivity and how the framework streamlines its implementation, finalized by the metrics tools setup in the project to support the testing and evaluation of the solution. Then, the solution validation is traced and executed based on the Goals, Questions, Metrics (GQM) approach to structure its analysis regarding maintainability, scalability, performance, testability, availability, monitorability, and security, finalized by the conclusion of the overall work done, where the contributions, threats to validity and possible future work are listed
    corecore