346,704 research outputs found

    Test-Driven Learning in High School Computer Science

    Get PDF
    Test-driven development is a style of software development that emphasizes writing tests first and running them frequently with the aid of automated testing tools. This development style is widely used in the software development industry to improve the rate of development while reducing software defects. Some computer science educators are adopting the test-driven development approach to help improve student understanding and performance on programming projects. Several studies have examined the benefits of teaching test-driven programming techniques to undergraduate student programmers, with generally positive results. However, the usage of test-driven learning at the high school level has not been studied to the same extent. This thesis investigates the use of test-driven learning in high school computer science classes and whether test-driven learning provides benefits for high school as well as college students

    Assessing Adaptive Learning Styles in Computer Science Through a Virtual World

    Get PDF
    abstract: Programming is quickly becoming as ubiquitous and essential a skill as general mathematics. However, many elementary and high school students are still not aware of what the computer science field entails. To make matters worse, students who are introduced to computer science are frequently being fed only part of what it is about rather than its entire construction. Consequently, they feel out of their depth when they approach college. Research has discovered that by teaching computer science and programming through a problem-driven approach and focusing on a combination of syntax and computational thinking, students can be prepared when entering higher levels of computer science education. This thesis describes the design, development, and early user testing of a theory-based virtual world for computer science instruction called System Dot. System Dot was designed to visually manifest programming instructions into interactable objects, giving players a way to see coding as tangible entities rather than text on a white screen. In order for System Dot to convey the true nature of computer science, a custom predictive recursive descent parser was embedded in the program to validate any user-generated solutions to pre-defined logical platforming puzzles. Steps were taken to adapt the virtual world to player behavior by creating a system to detect their learning style playing the game. Through a dynamic Bayesian network, System Dot aims to classify a player’s learning style based on the Felder-Sylverman Learning Style Model (FSLSM). Testers played through the first half of System Dot, which was enough to test out the Bayesian network and initial learning style classification. This classification was then compared to the assessment by Felder’s Index of Learning Styles Questionnaire (ILSQ). Lastly, this thesis will also discuss ways to use the results from the user testing to implement a personalized feedback system for the virtual world in the future and what has been learned through the learning style method.Dissertation/ThesisMasters Thesis Computer Science 201

    Understanding and Addressing Misconceptions in Introductory Programming: A Data-Driven Approach

    Get PDF
    With the expansion of computer science (CS) education, CS teachers in K-12 schools should be cognizant of student misconceptions and be prepared to help students establish accurate understanding of computer science and programming. This exploratory design-based research (DBR) study implemented a data-driven approach to identify secondary school students’ misconceptions using both their compilation and test errors and provide targeted feedback to promote students’ conceptual change in introductory programming. Research subjects were two groups of high school students enrolled in two sections of a Java-based programming course in a 2017 summer residential program for gifted and talented students. This study consisted of two stages. In the first stage, students of group 1 took the introductory programming class and used an automated learning system, Mulberry, which collected data on student problem-solving attempts. Data analysis was conducted to identify common programming errors students demonstrated in their programs and relevant misconceptions. In the second stage, targeted feedback to address these misconceptions was designed using principles from conceptual change and feedback theories and added to Mulberry. When students of group 2 took the same introductory programming class and solved programming problems in Mulberry, they received the targeted feedback to address their misconceptions. Data analysis was conducted to assess how the feedback affected the evolution of students’ (mis)conceptions. Using students’ erroneous solutions, 55 distinct compilation errors were identified, and 15 of them were categorized as common ones. The 15 common compilation errors accounted for 92% of all compilation errors. Based on the 15 common compilation errors, three underlying student misconceptions were identified, including deficient knowledge of fundamental Java program structure, misunderstandings of Java expressions, and confusion about Java variables. In addition, 10 common test errors were identified based on nine difficult problems. The results showed that 54% of all test errors were related to the difficult problems, and the 10 common test errors accounted for 39% of all test errors of the difficult problems. Four common student misconceptions were identified based on the 10 common test errors, including misunderstandings of Java input, misunderstandings of Java output, confusion about Java operators, and forgetting to consider special cases. Both quantitative and qualitative data analysis were conducted to see whether and how the targeted feedback affected students’ solutions. Quantitative analysis indicated that targeted feedback messages enhanced students’ rates of improving erroneous solutions. Group 2 students showed significantly higher improvement rates in all erroneous solutions and solutions with common errors compared to group 1 students. Within group 2, solutions with targeted feedback messages resulted in significantly higher improvement rates compared to solutions without targeted feedback messages. Results suggest that with targeted feedback messages students were more likely to correct errors in their code. Qualitative analysis of students’ solutions of four selected cases determined that students of group 2, when improving their code, made fewer intermediate incorrect solutions than students in group 1. The targeted feedback messages appear to have helped to promote conceptual change. The results of this study suggest that a data-driven approach to understanding and addressing student misconceptions, which is using student data in automated assessment systems, has the potential to improve students’ learning of programming and may help teachers build better understanding of their students’ common misconceptions and develop their pedagogical content knowledge (PCK). The use of automated assessment systems with misconception identification components may be helpful in pre-college introductory programming courses and so is encouraged as K-12 CS education expands. Researchers and developers of automated assessment systems should develop components that support identifying common student misconceptions using both compilation and non-compilation errors. Future research should continue to investigate the use of targeted feedback in automated assessment systems to address students’ misconceptions and promote conceptual change in computer science education

    Advances in Teaching & Learning Day Abstracts 2004

    Get PDF
    Proceedings of the Advances in Teaching & Learning Day Regional Conference held at The University of Texas Health Science Center at Houston in 2004

    Integrating Technology With Student-Centered Learning

    Get PDF
    Reviews research on technology's role in personalizing learning, its integration into curriculum-based and school- or district-wide initiatives, and the potential of emerging digital technologies to expand student-centered learning. Outlines implications

    Proceedings of Abstracts Engineering and Computer Science Research Conference 2019

    Get PDF
    © 2019 The Author(s). This is an open-access work distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For further details please see https://creativecommons.org/licenses/by/4.0/. Note: Keynote: Fluorescence visualisation to evaluate effectiveness of personal protective equipment for infection control is © 2019 Crown copyright and so is licensed under the Open Government Licence v3.0. Under this licence users are permitted to copy, publish, distribute and transmit the Information; adapt the Information; exploit the Information commercially and non-commercially for example, by combining it with other Information, or by including it in your own product or application. Where you do any of the above you must acknowledge the source of the Information in your product or application by including or linking to any attribution statement specified by the Information Provider(s) and, where possible, provide a link to this licence: http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/This book is the record of abstracts submitted and accepted for presentation at the Inaugural Engineering and Computer Science Research Conference held 17th April 2019 at the University of Hertfordshire, Hatfield, UK. This conference is a local event aiming at bringing together the research students, staff and eminent external guests to celebrate Engineering and Computer Science Research at the University of Hertfordshire. The ECS Research Conference aims to showcase the broad landscape of research taking place in the School of Engineering and Computer Science. The 2019 conference was articulated around three topical cross-disciplinary themes: Make and Preserve the Future; Connect the People and Cities; and Protect and Care

    Cleveland Schools That Are Making a Difference

    Get PDF
    Profiles thirteen Cleveland schools -- a cross section of traditional public, private, parochial, and charter schools, where the majority of students are economically disadvantaged -- that have demonstrated progress in student achievement gains

    Psychometrics in Practice at RCEC

    Get PDF
    A broad range of topics is dealt with in this volume: from combining the psychometric generalizability and item response theories to the ideas for an integrated formative use of data-driven decision making, assessment for learning and diagnostic testing. A number of chapters pay attention to computerized (adaptive) and classification testing. Other chapters treat the quality of testing in a general sense, but for topics like maintaining standards or the testing of writing ability, the quality of testing is dealt with more specifically.\ud All authors are connected to RCEC as researchers. They present one of their current research topics and provide some insight into the focus of RCEC. The selection of the topics and the editing intends that the book should be of special interest to educational researchers, psychometricians and practitioners in educational assessment
    • 

    corecore