216,839 research outputs found

    A survey of cost-sensitive decision tree induction algorithms

    Get PDF
    The past decade has seen a significant interest on the problem of inducing decision trees that take account of costs of misclassification and costs of acquiring the features used for decision making. This survey identifies over 50 algorithms including approaches that are direct adaptations of accuracy based methods, use genetic algorithms, use anytime methods and utilize boosting and bagging. The survey brings together these different studies and novel approaches to cost-sensitive decision tree learning, provides a useful taxonomy, a historical timeline of how the field has developed and should provide a useful reference point for future research in this field

    One-Class Classification: Taxonomy of Study and Review of Techniques

    Full text link
    One-class classification (OCC) algorithms aim to build classification models when the negative class is either absent, poorly sampled or not well defined. This unique situation constrains the learning of efficient classifiers by defining class boundary just with the knowledge of positive class. The OCC problem has been considered and applied under many research themes, such as outlier/novelty detection and concept learning. In this paper we present a unified view of the general problem of OCC by presenting a taxonomy of study for OCC problems, which is based on the availability of training data, algorithms used and the application domains applied. We further delve into each of the categories of the proposed taxonomy and present a comprehensive literature review of the OCC algorithms, techniques and methodologies with a focus on their significance, limitations and applications. We conclude our paper by discussing some open research problems in the field of OCC and present our vision for future research.Comment: 24 pages + 11 pages of references, 8 figure

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    Cost-Sensitive Decision Tree with Multiple Resource Constraints

    Get PDF
    Resource constraints are commonly found in classification tasks. For example, there could be a budget limit on implementation and a deadline for finishing the classification task. Applying the top-down approach for tree induction in this situation may have significant drawbacks. In particular, it is difficult, especially in an early stage of tree induction, to assess an attribute’s contribution to improving the total implementation cost and its impact on attribute selection in later stages because of the deadline constraint. To address this problem, we propose an innovative algorithm, namely, the Cost-Sensitive Associative Tree (CAT) algorithm. Essentially, the algorithm first extracts and retains association classification rules from the training data which satisfy resource constraints, and then uses the rules to construct the final decision tree. The approach has advantages over the traditional top-down approach, first because only feasible classification rules are considered in the tree induction and, second, because their costs and resource use are known. In contrast, in the top-down approach, the information is not available for selecting splitting attributes. The experiment results show that the CAT algorithm significantly outperforms the top-down approach and adapts very well to available resources.Cost-sensitive learning, mining methods and algorithms, decision trees

    Cost-Sensitive Decision Trees with Completion Time Requirements

    Get PDF
    In many classification tasks, managing costs and completion times are the main concerns. In this paper, we assume that the completion time for classifying an instance is determined by its class label, and that a late penalty cost is incurred if the deadline is not met. This time requirement enriches the classification problem but posts a challenge to developing a solution algorithm. We propose an innovative approach for the decision tree induction, which produces multiple candidate trees by allowing more than one splitting attribute at each node. The user can specify the maximum number of candidate trees to control the computational efforts required to produce the final solution. In the tree-induction process, an allocation scheme is used to dynamically distribute the given number of candidate trees to splitting attributes according to their estimated contributions to cost reduction. The algorithm finds the final tree by backtracking. An extensive experiment shows that the algorithm outperforms the top-down heuristic and can effectively obtain the optimal or near-optimal decision trees without an excessive computation time.classification, decision tree, cost and time sensitive learning, late penalty

    Time Series Cluster Kernel for Learning Similarities between Multivariate Time Series with Missing Data

    Get PDF
    Similarity-based approaches represent a promising direction for time series analysis. However, many such methods rely on parameter tuning, and some have shortcomings if the time series are multivariate (MTS), due to dependencies between attributes, or the time series contain missing data. In this paper, we address these challenges within the powerful context of kernel methods by proposing the robust \emph{time series cluster kernel} (TCK). The approach taken leverages the missing data handling properties of Gaussian mixture models (GMM) augmented with informative prior distributions. An ensemble learning approach is exploited to ensure robustness to parameters by combining the clustering results of many GMM to form the final kernel. We evaluate the TCK on synthetic and real data and compare to other state-of-the-art techniques. The experimental results demonstrate that the TCK is robust to parameter choices, provides competitive results for MTS without missing data and outstanding results for missing data.Comment: 23 pages, 6 figure
    corecore