2,249 research outputs found

    A systematic review on cloud testing

    Get PDF
    A systematic literature review is presented that surveyed the topic of cloud testing over the period (2012-2017). Cloud testing can refer either to testing cloud-based systems (testing of the cloud), or to leveraging the cloud for testing purposes (testing in the cloud): both approaches (and their combination into testing of the cloud in the cloud) have drawn research interest. An extensive paper search was conducted by both automated query of popular digital libraries and snowballing, which resulted into the final selection of 147 primary studies. Along the survey a framework has been incrementally derived that classifies cloud testing research along six main areas and their topics. The paper includes a detailed analysis of the selected primary studies to identify trends and gaps, as well as an extensive report of the state of art as it emerges by answering the identified Research Questions. We find that cloud testing is an active research field, although not all topics have received so far enough attention, and conclude by presenting the most relevant open research challenges for each area of the classification framework.This paper describes research work mostly undertaken in the context of the European Project H2020 731535: ElasTest. This work has also been partially supported by: the Italian MIUR PRIN 2015 Project: GAUSS; the Regional Government of Madrid (CM) under project Cloud4BigData (S2013/ICE-2894) cofunded by FSE & FEDER; and the Spanish Government under project LERNIM (RTC-2016-4674-7) cofunded by the Ministry of Economy and Competitiveness, FEDER & AEI

    Dagstuhl News January - December 2000

    Get PDF
    "Dagstuhl News" is a publication edited especially for the members of the Foundation "Informatikzentrum Schloss Dagstuhl" to thank them for their support. The News give a summary of the scientific work being done in Dagstuhl. Each Dagstuhl Seminar is presented by a small abstract describing the contents and scientific highlights of the seminar as well as the perspectives or challenges of the research topic

    Verification of JavaSpaces (TM) Parallel Programs

    Get PDF

    Dagstuhl News January - December 2006

    Get PDF
    "Dagstuhl News" is a publication edited especially for the members of the Foundation "Informatikzentrum Schloss Dagstuhl" to thank them for their support. The News give a summary of the scientific work being done in Dagstuhl. Each Dagstuhl Seminar is presented by a small abstract describing the contents and scientific highlights of the seminar as well as the perspectives or challenges of the research topic

    Third Conference on Artificial Intelligence for Space Applications, part 2

    Get PDF
    Topics relative to the application of artificial intelligence to space operations are discussed. New technologies for space station automation, design data capture, computer vision, neural nets, automatic programming, and real time applications are discussed

    Report on BCTCS 2016: The 32nd British Colloquium for Theoretical Computer Science 22–24 March 2016, Queen’s University Belfast

    Get PDF
    Report on BCTCS 2016: The 32nd British Colloquium for Theoretical Computer Science 22–24 March 2016, Queen’s University Belfas

    Formal Modeling of Connectionism using Concurrency Theory, an Approach Based on Automata and Model Checking

    Get PDF
    This paper illustrates a framework for applying formal methods techniques, which are symbolic in nature, to specifying and verifying neural networks, which are sub-symbolic in nature. The paper describes a communicating automata [Bowman & Gomez, 2006] model of neural networks. We also implement the model using timed automata [Alur & Dill, 1994] and then undertake a verification of these models using the model checker Uppaal [Pettersson, 2000] in order to evaluate the performance of learning algorithms. This paper also presents discussion of a number of broad issues concerning cognitive neuroscience and the debate as to whether symbolic processing or connectionism is a suitable representation of cognitive systems. Additionally, the issue of integrating symbolic techniques, such as formal methods, with complex neural networks is discussed. We then argue that symbolic verifications may give theoretically well-founded ways to evaluate and justify neural learning systems in the field of both theoretical research and real world applications

    Transparent fault tolerance for scalable functional computation

    Get PDF
    Reliability is set to become a major concern on emergent large-scale architectures. While there are many parallel languages, and indeed many parallel functional languages, very few address reliability. The notable exception is the widely emulated Erlang distributed actor model that provides explicit supervision and recovery of actors with isolated state. We investigate scalable transparent fault tolerant functional computation with automatic supervision and recovery of tasks. We do so by developing HdpH-RS, a variant of the Haskell distributed parallel Haskell (HdpH) DSL with Reliable Scheduling. Extending the distributed work stealing protocol of HdpH for task supervision and recovery is challenging. To eliminate elusive concurrency bugs, we validate the HdpH-RS work stealing protocol using the SPIN model checker. HdpH-RS differs from the actor model in that its principal entities are tasks, i.e. independent stateless computations, rather than isolated stateful actors. Thanks to statelessness, fault recovery can be performed automatically and entirely hidden in the HdpH-RS runtime system. Statelessness is also key for proving a crucial property of the semantics of HdpH-RS: fault recovery does not change the result of the program, akin to deterministic parallelism. HdpH-RS provides a simple distributed fork/join-style programming model, with minimal exposure of fault tolerance at the language level, and a library of higher level abstractions such as algorithmic skeletons. In fact, the HdpH-RS DSL is exactly the same as the HdpH DSL, hence users can opt in or out of fault tolerant execution without any refactoring. Computations in HdpH-RS are always as reliable as the root node, no matter how many nodes and cores are actually used. We benchmark HdpH-RS on conventional clusters and an HPC platform: all benchmarks survive Chaos Monkey random fault injection; the system scales well e.g. up to 1,400 cores on the HPC; reliability and recovery overheads are consistently low even at scale
    • …
    corecore