244 research outputs found

    Hyper-fast NMR imaging

    Get PDF
    The work presented in this thesis was carried out in the Physics Department at the University of Nottingham between October 1988 and October 1991. It is the original work of the author except where indicated by reference. This thesis describes the continuation of the development of Echo Volumar Imaging (EVI) to facilitate snapshot imaging of a volume within the human body. Variants of the technique which have also been investigated include a spin echo version, SE-EVI, and a zoomed version ZEVI. All formats acquired data in a modulus fashion in times ranging from 64 ms to 120 ms. Hardware limitations have restricted the image matrix size to 64 x 32 x 8 voxels and prompted the employment of more efficient gradient driver circuitry. A multi-mode resonant gradient circuit is described for use in both Echo Planar Imaging (EPI) and EVI. The circuit behaves in an overall resonant manner but at a fixed number of discrete frequencies. By choosing the number of resonant modes, the circuit can be used to generate approximations to a square wave or trapezoidal waveform. Because of the energy conserving nature of the circuit design much faster current rise times can be achieved with a given amplifier and gradient coil. The multi-mode gradient driver circuit was utilized both for planar imaging and to investigate the effect of rapidly modulated magnetic fields on the human body. A simple neural stimulation model is used to evaluate the stimulation threshold current density for a variety of magnetically induced waveforms and for sinusoidal stimulation as a function of frequency. Experimental results correlate well with the model showing that for short times, contrary to the widely held view, neural stimulation is independent of the magnetic field switching rate dB / dt, but depends on the final magnetic field value

    Process techniques study of integrated circuits Final scientific report

    Get PDF
    Surface impurity and structural defect analysis on thermally grown silicon oxide integrated circui

    Hyper-fast NMR imaging

    Get PDF
    The work presented in this thesis was carried out in the Physics Department at the University of Nottingham between October 1988 and October 1991. It is the original work of the author except where indicated by reference. This thesis describes the continuation of the development of Echo Volumar Imaging (EVI) to facilitate snapshot imaging of a volume within the human body. Variants of the technique which have also been investigated include a spin echo version, SE-EVI, and a zoomed version ZEVI. All formats acquired data in a modulus fashion in times ranging from 64 ms to 120 ms. Hardware limitations have restricted the image matrix size to 64 x 32 x 8 voxels and prompted the employment of more efficient gradient driver circuitry. A multi-mode resonant gradient circuit is described for use in both Echo Planar Imaging (EPI) and EVI. The circuit behaves in an overall resonant manner but at a fixed number of discrete frequencies. By choosing the number of resonant modes, the circuit can be used to generate approximations to a square wave or trapezoidal waveform. Because of the energy conserving nature of the circuit design much faster current rise times can be achieved with a given amplifier and gradient coil. The multi-mode gradient driver circuit was utilized both for planar imaging and to investigate the effect of rapidly modulated magnetic fields on the human body. A simple neural stimulation model is used to evaluate the stimulation threshold current density for a variety of magnetically induced waveforms and for sinusoidal stimulation as a function of frequency. Experimental results correlate well with the model showing that for short times, contrary to the widely held view, neural stimulation is independent of the magnetic field switching rate dB / dt, but depends on the final magnetic field value

    NASA Tech Briefs, Summer 1978, Volume 3, No. 2

    Get PDF
    Topics covered include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Solar Energy; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences

    Imaging Sensors and Applications

    Get PDF
    In past decades, various sensor technologies have been used in all areas of our lives, thus improving our quality of life. In particular, imaging sensors have been widely applied in the development of various imaging approaches such as optical imaging, ultrasound imaging, X-ray imaging, and nuclear imaging, and contributed to achieve high sensitivity, miniaturization, and real-time imaging. These advanced image sensing technologies play an important role not only in the medical field but also in the industrial field. This Special Issue covers broad topics on imaging sensors and applications. The scope range of imaging sensors can be extended to novel imaging sensors and diverse imaging systems, including hardware and software advancements. Additionally, biomedical and nondestructive sensing applications are welcome

    NASA Tech Briefs, August 1993

    Get PDF
    Topics include: Computer Graphics; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences; Books and Reports

    Industrial Applications: New Solutions for the New Era

    Get PDF
    This book reprints articles from the Special Issue "Industrial Applications: New Solutions for the New Age" published online in the open-access journal Machines (ISSN 2075-1702). This book consists of twelve published articles. This special edition belongs to the "Mechatronic and Intelligent Machines" section

    NASA Tech Briefs Index, 1978

    Get PDF
    Approximately 601 announcements of new technology derived from the research and development activities of the National Aeronautics and Space Administration are presented. Emphasis is placed on information considered likely to be transferrable across industrial, regional, or disciplinary lines. Subject matter covered includes: electronic components and circuits; electron systems; physical sciences; materials; life sciences; mechanics; machinery; fabrication technology; and mathematics and information sciences

    Nevada Test Site-Directed Research and Development: FY 2006 Report

    Full text link

    Demonstrating effective all-optical processing in ultrafast data networks using semiconductor optical amplifiers

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references.The demand for bandwidth in worldwide data networks continues to increase due to growing Internet use and high-bandwidth applications such as video. All-optical signal processing is one promising technique for providing the necessary capacity and offers payload transparency, power consumption which scales efficiently with increasing bit rates, reduced processing latency, and ultrafast performance. In this thesis, we focus on using semiconductor optical amplifier-based logic gates to address both routing and regeneration needs in ultrafast data networks. To address routing needs, we demonstrate a scalable, multi-packet all-optical header processing unit operating at a line rate of 40 Gb/s. For this experiment, we used the ultrafast nonlinear interferometer (UNI) gate, a discrete optical logic gate which has been demonstrated at speeds of 100 Gb/s for bit-wise switching. However, for all-optical switching to become a reality, integration is necessary to significantly reduce the cost of manufacturing, installation, and operation. One promising integrated all-optical logic gate is the semiconductor optical amplifier Mach-Zehnder interferometer (SOA-MZI). This gate has previously been demonstrated capable of up to 80 Gb/s bit-wise switching operation. To enable simple installation and operation of this gate, we developed a performance optimization method which can quickly and accurately pinpoint the optimal operating point of the switch. This eliminates the need for a time-intensive search over a large parameter space and significantly simplifies the operation of the switch. With this method, we demonstrate the ability of a single SOA-MZI logic gate to regenerate ultrafast pulses over 100 passes and 10,000 km in a regenerative loop. Ultimately, all-optical logic gates must be integrated on a single low-cost platform and demonstrated in cascaded, multi-gate operation for increased functionality.(cont.) This requires low-loss monolithic integration. Our approach to this involves an asymmetric twin waveguide (ATG) design. This design also has the potential for high-yields as a result of a high tolerance for fabrication errors. We present our characterization results of ATG waveguides and proposals for future improvements.by Jade P. Wang.Ph.D
    corecore