64,823 research outputs found

    Rapid design of tool-wear condition monitoring systems for turning processes using novelty detection

    Get PDF
    Condition monitoring systems of manufacturing processes have been recognised in recent years as one of the key technologies that provide the competitive advantage in many manufacturing environments. It is capable of providing an essential means to reduce cost, increase productivity, improve quality and prevent damage to the machine or workpiece. Turning operations are considered one of the most common manufacturing processes in industry. It is used to manufacture different round objects such as shafts, spindles and pins. Despite recent development and intensive engineering research, the development of tool wear monitoring systems in turning is still ongoing challenge. In this paper, force signals are used for monitoring tool-wear in a feature fusion model. A novel approach for the design of condition monitoring systems for turning operations using novelty detection algorithm is presented. The results found prove that the developed system can be used for rapid design of condition monitoring systems for turning operations to predict tool-wear

    Distributed machining control and monitoring using smart sensors/actuators

    Get PDF
    The study of smart sensors and actuators led, during the past few years, to the development of facilities which improve traditional sensors and actuators in a necessary way to automate production systems. In an other context, many studies are carried out aiming at defining a decisional structure for production activity control and the increasing need of reactivity leads to the autonomization of decisional levels close to the operational system. We suggest in this paper to study the natural convergence between these two approaches and we propose an integration architecture dealing with machine tool and machining control that enables the exploitation of distributed smart sensors and actuators in the decisional system

    Design methodology for smart actuator services for machine tool and machining control and monitoring

    Get PDF
    This paper presents a methodology to design the services of smart actuators for machine tools. The smart actuators aim at replacing the traditional drives (spindles and feed-drives) and enable to add data processing abilities to implement monitoring and control tasks. Their data processing abilities are also exploited in order to create a new decision level at the machine level. The aim of this decision level is to react to disturbances that the monitoring tasks detect. The cooperation between the computational objects (the smart spindle, the smart feed-drives and the CNC unit) enables to carry out functions for accommodating or adapting to the disturbances. This leads to the extension of the notion of smart actuator with the notion of agent. In order to implement the services of the smart drives, a general design is presented describing the services as well as the behavior of the smart drive according to the object oriented approach. Requirements about the CNC unit are detailed. Eventually, an implementation of the smart drive services that involves a virtual lathe and a virtual turning operation is described. This description is part of the design methodology. Experimental results obtained thanks to the virtual machine are then presented

    On the Machinability of an Al-63%SiC Metal Matrix Composite

    Get PDF
    This paper presents a preliminary study of aluminium matrix composite materials during machining, with a special focus on their behavior under conventional processes. This work will expand the knowledge of these materials, which is considered to be strategic for some industrial sectors, such as the aeronautics, electronics, and automotive sectors. Finding a machining model will allow us to define the necessary parameters when applying the materials to industry. As a previous step of the material and its machining, an experimental state-of-the-art review has been carried out, revealing a lack of studies about the composition and material properties, processes, tools, and recommended parameters. The results obtained and reflected in this paper are as follows; SiC is present in metallic matrix composite (MMC) materials in a very wide variety of sizes. A metallographic study of the material confirms the high percentage of reinforcement and very high microhardness values registered. During the machining process, tools present a very high level of wear in a very short amount of time, where chips are generated and arcs are segmented, revealing the high microhardness of the material, which is given by its high concentration of SiC. The chip shape is the same among other materials with a similar microhardness, such as Ti or its alloys. The forces registered in the machining process are quite di erent from conventional alloys and are more similar to the values of harder alloys, which is also the case for chip generation. The results coincide, in part, with previous studies and also give new insight into the behavior of this material, which does not conform to the assumptions for standard metallic materials, where the hypothesis of Sha er is not directly applicable. On the other hand, here, cutting forces do not behave in accordance with the traditional model. This paper will contribute to improve the knowledge of the Al-63%SiC MMC itself and the machining behavior

    Major challenges in prognostics: study on benchmarking prognostic datasets

    Get PDF
    Even though prognostics has been defined to be one of the most difficult tasks in Condition Based Maintenance (CBM), many studies have reported promising results in recent years. The nature of the prognostics problem is different from diagnostics with its own challenges. There exist two major approaches to prognostics: data-driven and physics-based models. This paper aims to present the major challenges in both of these approaches by examining a number of published datasets for their suitability for analysis. Data-driven methods require sufficient samples that were run until failure whereas physics-based methods need physics of failure progression

    Multi-agent framework based on smart sensors/actuators for machine tools control and monitoring

    Get PDF
    Throughout the history, the evolutions of the requirements for manufacturing equipments have depended on the changes in the customers' demands. Among the present trends in the requirements for new manufacturing equipments, there are more flexible and more reactive machines. In order to satisfy those requirements, this paper proposes a control and monitoring framework for machine tools based on smart sensor, on smart actuator and on agent concepts. The proposed control and monitoring framework achieves machine monitoring, process monitoring and adapting functions that are not usually provided by machine tool control systems. The proposed control and monitoring framework has been evaluated by the means of a simulated operative part of a machine tool. The communication between the agents is achieved thanks to an Ethernet network and CORBA protocol. The experiments (with and without cooperation between agents for accommodating) give encouraging results for implementing the proposed control framework to operational machines. Also, the cooperation between the agents of control and monitoring framework contributes to the improvement of reactivity by adapting cutting parameters to the machine and process states and to increase productivity

    An Experimental Investigation of Hot Machining with Induction to Improve Ti-5553 Machinability

    Get PDF
    The manufacturing of aeronautic parts with high mechanical properties requires the use of high performance materials. That’s why; new materials are used for landing gears such as the titanium alloy Ti-5553. The machining of this material leads to high cutting forces and temperatures, and poor machinability which requires the use of low cutting conditions. In order to increase the productivity rate, one solution could be to raise the workpiece initial temperature. Assisted hot machining consists in heating the workpiece material before the material removal takes place, in order to weaken the material mechanical properties, and thus reducing at least the cutting forces. First, a bibliography review has been done in order to determine all heating instruments used and the thermal alleviation that exists on conventional materials. An induction assisted hot machining was chosen and a system capable to maintain a constant temperature into the workpiece during machining (turning) was designed. Trails permit to identify the variation of cutting forces according to the initial temperature of the workpiece, with fixed cutting conditions according to the TMP (Tool-Material-Pair) methodology at ambient temperature. Tool life and deterioration mode are identified notably. The results analysis shows a low reduction of specific cutting forces for a temperature area compatible with industrial process. The reduction is more important at elevated temperature. However, it has consequences on quality of the workpiece surface and tool wear
    • 

    corecore