461 research outputs found

    Development of compressor end seals stator interstage seals, and stator pivot seals in air breathing propulsion systems Semiannual report no. 1, 29 Jun. - 31 Dec. 1965

    Get PDF
    Seal concepts evaluation for compressor end seals, stator interchange seals, and stator pivot seals in air breathing propulsion syste

    Thermal effects in two-phase flow through face seals

    Get PDF
    When liquid is sealed at high temperature, it flashes inside the seal due to pressure drop and/or viscous heat dissipation. Two-phase seals generally exhibit more erratic behavior than their single phase counterparts. Thermal effects, which are often neglected in single phase seal analyses, play an important role in determining seal behavior under two-phase operation. It is necessary to consider the heat generation due to viscous shear, conduction into the seal rings and convection with the leakage flow. Analytical models developed work reasonably well at the two extremes - for low leakage rates when convection is neglected and for higher leakage rates when conduction is neglected. A preliminary model, known as the Film Coefficient Model, is presented which considers conduction and convection both, and allows continuous boiling over an extended region unlike the previous low-leakage rate model which neglects convection and always forces a discrete boiling interface. Another simplified, semi-analytical model, based on the assumption of isothermal conditions along the seal interafce, has been developed for low leakage rates. The Film Coefficient Model may be used for more accurate and realistic description

    Grease lubricated spiral groove gyro bearings Final report

    Get PDF
    Grease lubricated spiral groove bearings suitable for spin axis of gyros in automatic pilot

    A bibliography /with abstracts/ on gas-lubricated bearings Interim report

    Get PDF
    Gas lubricated bearings - annotated bibliograph

    Rotordynamic Instability Problems in High-Performance Turbomachinery 1996

    Get PDF
    The first rotordynamics workshop proceedings emphasized a feeling of uncertainty in predicting the stability of characteristics of high-performance turbomachinery. In the second workshop proceedings these uncertainties were reduced through programs established to systematically resolve problems, with emphasis on experimental validation of the forces that influence rotordynamics. In the third proceedings many programs for predicting or measuring forces and force coefficients in high-performance turbomachinery produced results. Data became available for designing new machines with enhanced stability characteristics or for upgrading existing machines. In the fourth proceedings there emerged trends towards a more unified view of rotordynamic instability problems and several encouraging new analytical developments. The fifth workshop supported the continuing trend toward a unified view with several new developments in the design and manufacture of new turbomachineries with enhanced stability characteristics along with new data and associated numerical/theoretical results. The sixth workshop report provided field experience and experimental results, and expanded the use of computational and control techniques with integration of damper, bearing, and eccentric seal operation results. The seventh workshop report provided field experiences, numerical, theoretical, and experimental results and control methods for seals, bearings, and dampers with some attention given to variable thermophysical properties and turbulence measurements, and introduction of two-phase flow results. In the present workshop, active magnetic bearings (AMB's) evolve into a new method of measuring rotordynamic coefficients with discussions on honeycomb seals, drop of magnetically supported rotors, seals, bearings and dampers with new data being reported. The intent of the workshop and this proceedings is to provide a continuing impetus for an understanding and resolution of these problems

    Numerical modelling of bidirectional dry gas face seals

    Get PDF
    The optimization of the geometrical parameters of the aerodynamic lift features and the analysis of the fluid flow in the seal interface are inter-twined. Any small changes in the geometrical parameters of the aerodynamic lift features significantly affect the performance of a non-contacting gas face seal. For a gas face seal to function with optimum performance requires that the optimum geometrical parameters be identified. This can be achieved through a lengthy trial and error process, often heavily dependent on the designer’s depth of insight, itself dependent on experience, or can be achieved through automated numerical methods. The purpose of this research was to develop a reliable numerical model that can serve as a design tool for simulating the performance of both unidirectional and bidirectional dry gas face seals. This was achieved in three steps. The first approach consisted in developing a 2D numerical model that employed the Reynolds equation for seals operating at very low rotating speeds and low pressure differentials. In the second step a 3D-CFD model was assembled and the practicability of using CFD, in a seal design loop, for seals operating in wide range of operating conditions, was investigated. This model employed a commercial CFD package (ANSYS CFX version 11). For last approach both models were incorporated into an automatic optimization tool that can generate optimal seal geometries with a minimum of human intervention. An extensive set of results from the analysis of dry gas face seals spanning across different operating conditions and geometrical seal face profiles, with the inclusion of convergent radial taper, are presented and discussed in this thesis. The results obtained from the Reynolds equation and 3D CFD models are compared and critically analysed. Results obtained with both models are validated against test data obtained from AESSEAL plc, the sponsor of this research. The 3D CFD model predictions showed a better agreement with the test data on the seal leakage than the Reynolds equation model. The leakage rates and fluid film thickness predictions illustrate how the 3D CFD model can be used for seal design while overcoming some of the shortcomings of the Reynolds equation based models. The major limitation of the 3D CFD model is that it is computationally expensive. An automatic optimization tool which can be used for the design of dry gas face seals has been presented. The improvements achieved from the optimization of a spiral groove face seal utilising the automatic optimization tool are: 4.8% increase of opening force, 13.2% reduction of seal leakage, 20.7% increase of design efficiency parameter, 28.3% increase of axial film stiffness and 15.9% reduction of power consumption. A proposed new design of dry gas face seal capable of bidirectional operation has been presented. This type of seal outperformed the spiral groove face seal, in reverse rotation of the sealing shaft, in terms of opening force and positive axial film stiffness

    Rotordynamic Instability Problems in High-Performance Turbomachinery

    Get PDF
    Diagnostic and remedial methods concerning rotordynamic instability problems in high performance turbomachinery are discussed. Instabilities due to seal forces and work-fluid forces are identified along with those induced by rotor bearing systems. Several methods of rotordynamic control are described including active feedback methods, the use of elastometric elements, and the use of hydrodynamic journal bearings and supports

    Development of compressor end seals, stator interstage seals, and stator pivot seals in advanced air breathing propulsion systems Semiannual report, 1 Jan. - 30 Jun. 1966

    Get PDF
    Design of compressor end, stator interface, and stator pivot seals for advanced air breathing engine
    • …
    corecore