1,891 research outputs found

    CLOCIS:Cloud-based conformance testing framework for IoT devices in the future internet

    Get PDF
    In recent years, the Internet of Things (IoT) has not only become ubiquitous in daily life but has also emerged as a pivotal technology across various sectors, including smart factories and smart cities. Consequently, there is a pressing need to ensure the consistent and uninterrupted delivery of IoT services. Conformance testing has thus become an integral aspect of IoT technologies. However, traditional methods of IoT conformance testing fall short of addressing the evolving requirements put forth by both industry and academia. Historically, IoT testing has necessitated a visit to a testing laboratory, implying that both the testing systems and testers must be co-located. Furthermore, there is a notable absence of a comprehensive method for testing an array of IoT standards, especially given their inherent heterogeneity. With a surge in the development of diverse IoT standards, crafting an appropriate testing environment poses challenges. To address these concerns, this article introduces a method for remote IoT conformance testing, underpinned by a novel conceptual architecture termed CLOCIS. This architecture encompasses an extensible approach tailored for a myriad of IoT standards. Moreover, we elucidate the methods and procedures integral to testing IoT devices. CLOCIS, predicated on this conceptual framework, is actualized, and to attest to its viability, we undertake IoT conformance testing and present the results. When leveraging CLOCIS, small and medium-sized enterprises (SMEs) and entities in the throes of IoT service development stand to benefit from a reduced time to market and cost-efficient testing procedures. Additionally, this innovation holds promise for IoT standardization communities, enabling them to champion their standards with renewed vigor

    Comunicaciones Móviles de Misión Crítica sobre Redes LTE

    Get PDF
    Mission Critical Communications (MCC) have been typically provided by proprietary radio technologies, but, in the last years, the interest to use commercial-off-the-shelf mobile technologies has increased. In this thesis, we explore the use of LTE to support MCC. We analyse the feasibility of LTE networks employing an experimental platform, PerformNetworks. To do so, we extend the testbed to increase the number of possible scenarios and the tooling available. After exploring the Key Performance Indicators (KPIs) of LTE, we propose different architectures to support the performance and functional requirements demanded by MCC. We have identified latency as one of the KPI to improve, so we have done several proposals to reduce it. These proposals follow the Mobile Edge Computing (MEC) paradigm, locating the services in what we called the fog, close to the base station to avoid the backhaul and transport networks. Our first proposal is the Fog Gateway, which is a MEC solution fully compatible with standard LTE networks that analyses the traffic coming from the base station to decide whether it has to be routed to the fog of processed normally by the SGW. Our second proposal is its natural evolution, the GTP Gateway that requires modifications on the base station. With this proposal, the base station will only transport over GTP the traffic not going to the fog. Both proposals have been validated by providing emulated scenarios, and, in the case of the Fog Gateway, also with the implementation of different prototypes, proving its compatibility with standard LTE network and its performance. The gateways can reduce drastically the end-to-end latency, as they avoid the time consumed by the backhaul and transport networks, with a very low trade-off

    Including context in a routing algorithm for the internet of things

    Get PDF
    Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia InformáticaThe “Internet of Things” assumes that a large number of devices which are used on a daily basis will eventually become connected to the Internet. This scenario will provide room for a large set of new applications, however the network connections of an enormous set of nodes, which can be connected and disconnected, can move around and which have limitations with regards to their processing and communication capabilities, raises the need for the development of new message routing algorithms, different from those being in use today. In this thesis, a contribution is made towards the development of this type of algorithms. In particular, the idea which is tested is whether routing algorithms can improve their performance at various levels, such as, message delivery time, number of messages lost, power consumption, etc., if in the routing decisions these algorithms can make use of the concept of “Context”. Within the framework of this thesis, the “Context” is the organized collection of information which the routing algorithm collects from the environment surrounding the network nodes, and which allows it to make better routing decisions. This information can be related to low-level issues, such as, node location, power required to send a message, etc., as well as, with constraints related to the application, such as, message priority, maximum delivery time, etc. In order to evaluate this approach, this thesis proposes a routing algorithm called C-AODV. As the name suggests, it is based on the ADOV algorithm, however it is modified in several aspects; in particular, the possibility of using information collected from the context can be utilized to improve message routing. In order to test the proposed solution, several tests were performed on the NS-3 simulator which allowed the evaluation of the algorithm functionalities. The tests performed indicate that the proposed solution is valid

    Semi­Automatic Generation of Tests for Assessing Correct Integration of Security Mechanisms in the Internet of Things

    Get PDF
    Internet of Things (IoT) is expanding at a global level and its influence in our daily lives is increasing. This fast expansion, with companies competing to be the first to deploy new IoT systems, has led to the majority of the software being created and produced without due attention being given to security considerations and without adequate security testing. Software quality and security testing are inextricably linked. The most successful approach to achieve secure software is to adhere to secure development, deployment, and maintenance principles and practices throughout the development process. Security testing is a procedure for ensuring that a system keeps the users data secure and performs as expected. However, extensively testing a system can be a very daunting task, that usually requires professionals to be well versed in the subject, so as to be performed correctly. Moreover, not all development teams can have access to a security expert to perform security testing in their IoT systems. The need to automate security testing emerged as a potential means to solve this issue. This dissertation describes the process undertaken to design and develop a module entitled Assessing Correct Integration of Security Mechanisms (ACISM) that aims to provide system developers with the means to improve system security by anticipating and preventing potential attacks. Using the list of threats that the system is vulnerable as inputs, this tool provides developers with a set of security tests and tools that will allow testing how susceptible the system is to each of those threats. This tool outputs a set of possible attacks derived from the threats and what tools could be used to simulate these attacks. The tool developed in this dissertation has the purpose to function as a plugin of a framework called Security Advising Modules (SAM). It has the objective of advising users in the development of secure IoT, cloud and mobile systems during the design phases of these systems. SAM is a modular framework composed by a set of modules that advise the user in different stages of the security engineering process. To validate the usefulness of the ACISM module in real life, it was tested by 17 computer science practitioners. The feedback received from these users was very positive. The great majority of the participants found the tool to be extremely helpful in facilitating the execution of security tests in IoT. The principal contributions achieved with this dissertation were: the creation of a tool that outputs a set of attacks and penetration tools to execute the attacks mentioned, all starting from the threats an IoT system is susceptible to. Each of the identified attacking tools will be accompanied with a brief instructional guide; all summing up to an extensive review of the state of the art in testing.A Internet das Coisas (IoT) é um dos paradigmas com maior expansão mundial à data de escrita da dissertação, traduzindo­se numa influência incontornável no quotidiano. As empresas pretendem ser as primeiras a implantar novos sistemas de IoT como resultado da sua rápida expansão, o que faz com que a maior parte do software seja criado e produzido sem considerações de segurança ou testes de segurança adequados. A qualidade do software e os testes de segurança estão intimamente ligados. A abordagem mais bemsucedida para obter software seguro é aderir aos princípios e práticas de desenvolvimento, implantação e manutenção seguros em todo o processo de desenvolvimento. O teste de segurança é um procedimento para garantir que um sistema proteja os dados do utilizador e execute conforme o esperado. Esta dissertação descreve o esforço despendido na concepção e desenvolvimento de uma ferramenta que, tendo em consideração as ameaças às quais um sistema é vulnerável, produz um conjunto de testes e identifica um conjunto de ferramentas de segurança para verificar a susceptibilidade do sistema às mesmas. A ferramenta mencionada anteriormente foi desenvolvida em Python e tem como valores de entrada uma lista de ameaças às quais o sistema é vulnerável. Depois de processar estas informações, a ferramenta produz um conjunto de ataques derivados das ameaças e possíveis ferramentas a serem usadas para simular esses ataques. Para verificar a utilidade da ferramenta em cenários reais, esta foi testada por 17 pessoas com conhecimento na área de informática. A ferramenta foi avaliada pelos sujeitos de teste de uma forma muito positiva. A grande maioria dos participantes considerou a ferramenta extremamente útil para auxiliar a realização de testes de segurança em IoT. As principais contribuições alcançadas com esta dissertação foram: a criação de uma ferramenta que, através das ameaças às quais um sistema IoT é susceptível, produzirá um conjunto de ataques e ferramentas de penetração para executar os ataques mencionados. Cada uma das ferramentas será acompanhada por um breve guia de instruções; uma extensa revisão do estado da arte em testes.The work described in this dissertation was carried out at the Instituto de Telecomunicações, Multimedia Signal Processing – Covilhã Laboratory, in Universidade da Beira Interior, at Covilhã, Portugal. This research work was funded by the S E C U R I o T E S I G N Project through FCT/COMPETE/FEDER under Reference Number POCI­01­0145­FEDER030657 and by Fundação para Ciência e Tecnologia (FCT) research grant with reference BIL/Nº11/2019­B00701

    IoT for Efficient Data Collection from Real World Resources

    Get PDF
    The Internet of Things is providing new ways of experiencing and reacting to the physical world through the ability of advanced electronic devices that collect data. At the same time, as new application scenarios are envisioned, with the assistance of information generated by sensors, new problems and obstacles will arise. This requires new development to meet business and technical requirements, such as interoperability between heterogeneous devices and confidence (such as validity, security and trust) over smart devices. With the increase of these complex requirements it becomes crucial to develop an infrastructure aimed at tackling such requirements mentioned. IoT middleware – a software layer that bridges the gap between devices and information systems. Thus, this work aims to study the mechanisms and methodology for data collection, devices interoperability and data filtering, closer to the data sources, in order to optimize the collection and pre-analysis of data that can then be used by various applications such as the ones in manufacturing industry

    A Socio-inspired CALM Approach to Channel Assignment Performance Prediction and WMN Capacity Estimation

    Full text link
    A significant amount of research literature is dedicated to interference mitigation in Wireless Mesh Networks (WMNs), with a special emphasis on designing channel allocation (CA) schemes which alleviate the impact of interference on WMN performance. But having countless CA schemes at one's disposal makes the task of choosing a suitable CA for a given WMN extremely tedious and time consuming. In this work, we propose a new interference estimation and CA performance prediction algorithm called CALM, which is inspired by social theory. We borrow the sociological idea of a "sui generis" social reality, and apply it to WMNs with significant success. To achieve this, we devise a novel Sociological Idea Borrowing Mechanism that facilitates easy operationalization of sociological concepts in other domains. Further, we formulate a heuristic Mixed Integer Programming (MIP) model called NETCAP which makes use of link quality estimates generated by CALM to offer a reliable framework for network capacity prediction. We demonstrate the efficacy of CALM by evaluating its theoretical estimates against experimental data obtained through exhaustive simulations on ns-3 802.11g environment, for a comprehensive CA test-set of forty CA schemes. We compare CALM with three existing interference estimation metrics, and demonstrate that it is consistently more reliable. CALM boasts of accuracy of over 90% in performance testing, and in stress testing too it achieves an accuracy of 88%, while the accuracy of other metrics drops to under 75%. It reduces errors in CA performance prediction by as much as 75% when compared to other metrics. Finally, we validate the expected network capacity estimates generated by NETCAP, and show that they are quite accurate, deviating by as low as 6.4% on an average when compared to experimentally recorded results in performance testing

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modified our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the field of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    Recent Developments in Smart Healthcare

    Get PDF
    Medicine is undergoing a sector-wide transformation thanks to the advances in computing and networking technologies. Healthcare is changing from reactive and hospital-centered to preventive and personalized, from disease focused to well-being centered. In essence, the healthcare systems, as well as fundamental medicine research, are becoming smarter. We anticipate significant improvements in areas ranging from molecular genomics and proteomics to decision support for healthcare professionals through big data analytics, to support behavior changes through technology-enabled self-management, and social and motivational support. Furthermore, with smart technologies, healthcare delivery could also be made more efficient, higher quality, and lower cost. In this special issue, we received a total 45 submissions and accepted 19 outstanding papers that roughly span across several interesting topics on smart healthcare, including public health, health information technology (Health IT), and smart medicine
    corecore