476 research outputs found

    Test Sequence Generation From Formally Verified SysML Models

    Get PDF
    est generation has been acknowledged as a cost-prone activity reducing productivity and time to market. Theexpected benefits of Model Based Systems Engineering includeautomated generation of test sequences from models. The paperproposes verification solutions for the System Modeling Lan-guage (SysML). In particular, the paper shows how to linktest generation to formal verification. The proposed algorithmsare implemented by the free software TTool. Two case studiessupport discussion on conformance and interoperability testing,respectively

    Combining SysML and AADL for the design, validation and implementation of critical systems

    Get PDF
    The realization of critical systems goes through multiple phases of specification, design, integration, validation, and testing. It starts from high-level sketches down to the final product. Model-Based Design has been acknowledged as a good conveyor to capture these steps. Yet, there is no universal solution to represent all activities. Two candidates are the OMG-based SysML to perform high-level modeling tasks, and the SAE AADL to perform lower-level ones, down to the implementation. The paper shares an experience on the seamless use of SysML and the AADL to model, validate/verify and implement a flight management system

    TURTLE: Four Weddings and a Tutorial

    Get PDF
    The paper discusses an educational case study of protocol modelling in TURTLE, a real-time UML profile supported by the open source toolkit TTool. The method associated with TURTLE is step by step illustrated with the connection set up and handover procedures defined for the Future Air navigation Systems. The paper covers the following methodological stages: requirement modeling, use-case driven and scenario based analysis, object-oriented design and rapid prototyping in Java. Emphasis is laid on the formal verification of analysis and design diagrams

    (User-friendly) formal requirements verification in the context of ISO26262

    Get PDF
    Abstract In order to achieve the highest safety integrity levels, ISO26262 recommends the use of formal methods for various verification activities, throughout the lifecycle of safety-related embedded systems for road vehicles. Since formal methods are known to be difficult to use, one of the main challenges raised by these ISO26262 requirements is to find cost-effective approaches for being compliant with them. This paper proposes an approach for requirements formal verification where formal methods, languages, and tools are only minimally exposed to the user, and are integrated into one of the commonly used system modeling environments based on SysML. This approach does not require particular expertise in formal methods still allowing to apply them. Hence, personnel training costs and development costs should be kept limited. The proposed approach has been implemented as a plugin of the Topcased environment. Although it is limited to discrete system models, it has been successfully experimented on an industrial use case

    Safe and Secure Support for Public Safety Networks

    Get PDF
    International audienceAs explained by Tanzi et al. in the first volume of this book, communicating and autonomous devices will surely have a role to play in the future Public Safety Networks. The “communicating” feature comes from the fact that the information should be delivered in a fast way to rescuers. The “autonomous” characteristic comes from the fact that rescuers should not have to concern themselves about these objects: they should perform their mission autonomously so as not to delay the intervention of the rescuers, but rather to assist them efficiently and reliably.</p

    Test-Driven, Model-Based Systems Engineering.

    Get PDF

    Executable system architecting using systems modeling language in conjunction with Colored Petri Nets - a demonstration using the GEOSS network centric system

    Get PDF
    Models and simulation furnish abstractions to manage complexities allowing engineers to visualize the proposed system and to analyze and validate system behavior before constructing it. Unified Modeling Language (UML) and its systems engineering extension, Systems Modeling Language (SysML), provide a rich set of diagrams for systems specification. However, the lack of executable semantics of such notations limits the capability of analyzing and verifying defined specifications. This research has developed an executable system architecting framework based on SysML-CPN transformation, which introduces dynamic model analysis into SysML modeling by mapping SysML notations to Colored Petri Net (CPN), a graphical language for system design, specification, simulation, and verification. A graphic user interface was also integrated into the CPN model to enhance the model-based simulation. A set of methodologies has been developed to achieve this framework. The aim is to investigate system wide properties of the proposed system, which in turn provides a basis for system reconfiguration --Abstract, page iii

    A Case Study in Formal System Engineering with SysML

    Get PDF
    International audienceIn the development of complex critical systems, an important source of errors is the misinterpretation of system requirements allocated to the software, due to inadequate communication between system engineering teams and software teams. In response, organizations that develop such systems are searching for solutions allowing formal system engineering and system to software bridging, based on standard languages like SysML. As part of this effort, we have defined a formal profile for SysML (OMEGA SysML) and we have built a simulation and verification toolbox for this profile (IFx). This paper reports on the experience of modelling and validating an industry-grade system, the Solar Generation System (SGS) of the Automated Transfer Vehicle (ATV) built by Astrium, using IFx-OMEGA. The experience reveals what can currently be expected from such an approach and what are the weak points that should be addressed by future research and development
    • …
    corecore