8,372 research outputs found

    Planning and scheduling research at NASA Ames Research Center

    Get PDF
    Planning and scheduling is the area of artificial intelligence research that focuses on the determination of a series of operations to achieve some set of (possibly) interacting goals and the placement of those operations in a timeline that allows them to be accomplished given available resources. Work in this area at the NASA Ames Research Center ranging from basic research in constrain-based reasoning and machine learning, to the development of efficient scheduling tools, to the application of such tools to complex agency problems is described

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    Automated specification-based testing of graphical user interfaces

    Get PDF
    Tese de doutoramento. Engenharia Electrónica e de Computadores. 2006. Faculdade de Engenharia. Universidade do Porto, Departamento de Informática, Escola de Engenharia. Universidade do Minh

    Application of Metamaterials for Multifunctional Satellite Bus Enabled via Additive Manufacturing

    Get PDF
    Space systems require materials with superior stiffness to weight ratios to provide structural integrity while minimizing mass. Additive manufacturing processes enable the design of metamaterials that exceed the performance of naturally occurring materials in addition to allowing the integration of non-structural functions. This research explored the use of a high stiffness, high density, small melt pool track width AM material, Inconel 718, to enable the production of metamaterials with finer features possible than can possibly be created using a lower density aluminum alloy material. Various metamaterials were designed utilizing thin wall triply periodic minimal surface infilled sandwich structures. The performance characteristics of these metamaterials were evaluated through modal analysis; demonstrating a 16-18% greater stiffness-to-weight ratio than 7075-T6 aluminium. These results were successfully applied to a multifunctional, lightweight, 3U CubeSat chassis design, fabricated from Inconel 718; resulting in a structurally mass efficient satellite bus. Additionally, modal analysis was conducted on the CubeSat chassis loaded with representative payload masses to evaluate the dynamic modal response of the final structure. Vibration testing was conducted in accordance with NASA General Environmental Verification Standard qualification standards, demonstrating the survivability of the chassis under launch conditions. It was shown this metamaterial based design approach could provide a lighter, stiffer chassis than manufactured from traditional aluminum alloy components

    F-16 Ventral Fin Buffet Alleviation Using Piezoelectric Actuators

    Get PDF
    Buffet-induced vibrations can have a disastrous impact on aircraft structures. Early attempts at combating buffet vibrations included passive methods such as structural enhancements and leading edge fences. Active methods have shown greater promise, including active airflow control, control surface modulation, and active structural control using piezoelectric actuators. Surface mounted piezoelectric actuators impart directional strain reducing the negative effects associated with harmful vibration. The Block-15 F-16 ventral fin represents an aircraft structure prone to failure when subjected to the buffet field from the wake of a LANTIRN pod. This research takes advantage of the susceptibility to buffet vibration of the Block 15 ventral fin in an effort to design an active control system to alleviate vibrations using piezoelectric actuators and sensors and to demonstrate its capability during flight test. It was sponsored by the United States Air Force (USAF) Test Pilot School (TPS). The development of an active control system began with the specification of piezoelectric actuators and sensors to be used in a collocated design to alleviate the vibrations of the first two modes of the ventral fin. A switching amplifier was designed and built to drive the actuators during all phases of testing. For the piezoelectric actuators to be effective, they needed to be located within the regions of highest strain energy and aligned with the principal strain vectors in those regions, the direction of principle strain was experimentally determined to ensure the proper orientation of the piezoelectric hardware on the ventral fin\u27s surface. Two control techniques were used in this research: positive position feedback and Linear Quadratic Gaussian compensator
    • …
    corecore