163,407 research outputs found

    The Real World Software Process

    Get PDF
    The industry-wide demand for rapid development in concert with greater process maturity has seen many software development firms adopt tightly structured iterative processes. While a number of commercial vendors offer suitable process infrastructure and tool support, the cost of licensing, configuration and staff training may be prohibitive for the small and medium size enterprises (SMEs) which dominate the Asia-Pacific software industry. This work addresses these problems through the introduction of the Real World Software Process (RWSP), a freely available, Web-based iterative scheme designed specifically for small teams and organisations. RWSP provides a detailed process description, high quality document templates - including code review and inspection guidelines - and the integrated tutorial support necessary for successful usage by inexperienced developers and teams. In particular it is intended that the process be readily usable by software houses which at present do not follow a formal process, and that the free RWSP process infrastructure should be a vehicle for improving industry standards

    Software quality assurance plan for GCS

    Get PDF
    The software quality assurance (SQA) function for the Guidance and Control Software (GCS) project which is part of a software error studies research program is described. The SQA plan outlines all of the procedures, controls, and audits to be carried out by the SQA organization to ensure adherence to the policies, procedures, and standards for the GCS project

    Solar Splash Senior Design Project

    Get PDF
    Indiana University Purdue University IndianapolisThe Solar Splash senior project is the first attempt at creating an entirely solar propelled watercraft. The initial project intent was to design and create a supplement meets the specifications and compete in the competition. With this in mind, a budget approach was taken in order to be able to fund the task at hand. As the project progressed toward the end of the low-level design phase it was evident that the competition would not occur. At the midpoint of the project, the goals and objectives had changed entirely. The new focus was targeted at proving the operation of the systems involved in the watercraft. Having been faced with a new series of objectives and an entirely new scope, the project began to appear doable. The primary focus of the project at this point entirely relied on simulation data and data analysis. The idea was not reinventing the wheel but rather verifying that the wheel rolled. Using the designed propulsion, solar and sensors systems, with the help of a combination of software programs, the idea of a budget solution can be seen. The software used tell the story of the boat that would have been created had the project continued down the original proposed path. As systems were tested and analyzed, they were also adjusted and improved upon. The analysis process consumed a lot of time but acted as a highlighter for all the flaws that the system suffered from. This document introduces the design concepts and schematics of the Solar Splash senior design project. Within are detailed drawings and diagrams for the electrical systems devised for the construction operation of the watercraft. This report is a means of displaying the layout of the final product and how all systems tie together. The report will contain detailed information on not only hardware aspects but also software and how those will bridge together. The report is meant to be in layman’s terms and should be easily interpreted at all levels. The bulk of the information found in the report will be found in the testing sections where analysis of a theoretical boat is done. The motor design, solar design, and fluid dynamic analysis of the boat hull and propeller can be found in their respective section. The innerworkings, testing processes and thoughts behind each decision can also be found in these sections. The document begins with a table of contents identifying each main and subcategory of information. The next page is the document identification, revision history, and lesser known definitions. Following that is the introduction and scope. Specification requirements for the ‘general requirements’, ‘electrical requirements’ and ‘mechanical requirements’ are found on the following page. A system flowchart can be found in the high-level Design along with the design decision matrices for each system. The design portion then begins starting with the System-wide design changes and decisions. The hardware and software designs and schematics follow and cover the proposed schematics and drawings for the system. Cost breakdowns for each individual system are also found in the low-level section. Testing methodologies, results and an explanation of the testing software can be found after the low-level design. A summation of all these testing results is found near the tail of the document. Conclusions, recommendations, and appendixes can be found as the last three sections, respectively.Electrical Engineering Technolog

    Product assurance policies and procedures for flight dynamics software development

    Get PDF
    The product assurance policies and procedures necessary to support flight dynamics software development projects for Goddard Space Flight Center are presented. The quality assurance and configuration management methods and tools for each phase of the software development life cycles are described, from requirements analysis through acceptance testing; maintenance and operation are not addressed

    J2EE application for clustered servers : focus on balancing workloads among clustered servers : a thesis presented in partial fulfilment of the requirements for the degree of Master of Information Science in Computer Science at Massey University, Albany, New Zealand

    Get PDF
    J2EE has become a de facto platform for developing enterprise applications not only by its standard based methodology but also by reducing the cost and complexity of developing multi-tier enterprise applications. J2EE based application servers keep business logic separate from the front-end applications (client-side) and back-end database servers. The standardized components and containers simplify J2EE application design. The containers automatically manage the fundamental system level services for its components, which enable the components design to focus on the business requirement and business logic. This study applies the latest J2EE technologies to configure an online benchmark enterprise application - MG Project. The application focuses on three types of components design including Servlet, entity bean and session bean. Servlets run on the web server Tomcat, EJB components, session beans and entity beans run on the application server JBoss and the database runs on the database server Postgre SQL. This benchmark application is used for testing the performance of clustered JBoss due to various load-balancing policies applied at the EJB level. This research also focuses on studying the various load-balancing policies effect on the performance of clustered JBoss. As well as the four built-in load-balancing policies i.e. First Available, First Available Identical All Proxies, Random Robin and Round Robin, the study also extend the JBoss Load balance Policy interface to design two dynamic load-balancing policies. They are dynamic and dynamic weight-based load-balancing policies. The purpose of dynamic load-balancing policies design is to ensure minimal response time and obtain better performance by dispatching incoming requests to the appropriate server. However, a more accurate policy usually means more communications and calculations, which give an extra burden to a heavily loaded application server that can lead to drops in the performance

    ERIGrid Holistic Test Description for Validating Cyber-Physical Energy Systems

    Get PDF
    Smart energy solutions aim to modify and optimise the operation of existing energy infrastructure. Such cyber-physical technology must be mature before deployment to the actual infrastructure, and competitive solutions will have to be compliant to standards still under development. Achieving this technology readiness and harmonisation requires reproducible experiments and appropriately realistic testing environments. Such testbeds for multi-domain cyber-physical experiments are complex in and of themselves. This work addresses a method for the scoping and design of experiments where both testbed and solution each require detailed expertise. This empirical work first revisited present test description approaches, developed a newdescription method for cyber-physical energy systems testing, and matured it by means of user involvement. The new Holistic Test Description (HTD) method facilitates the conception, deconstruction and reproduction of complex experimental designs in the domains of cyber-physical energy systems. This work develops the background and motivation, offers a guideline and examples to the proposed approach, and summarises experience from three years of its application.This work received funding in the European Community’s Horizon 2020 Program (H2020/2014–2020) under project “ERIGrid” (Grant Agreement No. 654113)
    corecore