6,626 research outputs found

    Accuracy-based scoring for phrase-based statistical machine translation

    Get PDF
    Although the scoring features of state-of-the-art Phrase-Based Statistical Machine Translation (PB-SMT) models are weighted so as to optimise an objective function measuring translation quality, the estimation of the features themselves does not have any relation to such quality metrics. In this paper, we introduce a translation quality-based feature to PBSMT in a bid to improve the translation quality of the system. Our feature is estimated by averaging the edit-distance between phrase pairs involved in the translation of oracle sentences, chosen by automatic evaluation metrics from the N-best outputs of a baseline system, and phrase pairs occurring in the N-best list. Using our method, we report a statistically significant 2.11% relative improvement in BLEU score for the WMT 2009 Spanish-to-English translation task. We also report that using our method we can achieve statistically significant improvements over the baseline using many other MT evaluation metrics, and a substantial increase in speed and reduction in memory use (due to a reduction in phrase-table size of 87%) while maintaining significant gains in translation quality

    Identifying Patch Correctness in Test-Based Program Repair

    Full text link
    Test-based automatic program repair has attracted a lot of attention in recent years. However, the test suites in practice are often too weak to guarantee correctness and existing approaches often generate a large number of incorrect patches. To reduce the number of incorrect patches generated, we propose a novel approach that heuristically determines the correctness of the generated patches. The core idea is to exploit the behavior similarity of test case executions. The passing tests on original and patched programs are likely to behave similarly while the failing tests on original and patched programs are likely to behave differently. Also, if two tests exhibit similar runtime behavior, the two tests are likely to have the same test results. Based on these observations, we generate new test inputs to enhance the test suites and use their behavior similarity to determine patch correctness. Our approach is evaluated on a dataset consisting of 139 patches generated from existing program repair systems including jGenProg, Nopol, jKali, ACS and HDRepair. Our approach successfully prevented 56.3\% of the incorrect patches to be generated, without blocking any correct patches.Comment: ICSE 201

    Classifying the Correctness of Generated White-Box Tests: An Exploratory Study

    Full text link
    White-box test generator tools rely only on the code under test to select test inputs, and capture the implementation's output as assertions. If there is a fault in the implementation, it could get encoded in the generated tests. Tool evaluations usually measure fault-detection capability using the number of such fault-encoding tests. However, these faults are only detected, if the developer can recognize that the encoded behavior is faulty. We designed an exploratory study to investigate how developers perform in classifying generated white-box test as faulty or correct. We carried out the study in a laboratory setting with 54 graduate students. The tests were generated for two open-source projects with the help of the IntelliTest tool. The performance of the participants were analyzed using binary classification metrics and by coding their observed activities. The results showed that participants incorrectly classified a large number of both fault-encoding and correct tests (with median misclassification rate 33% and 25% respectively). Thus the real fault-detection capability of test generators could be much lower than typically reported, and we suggest to take this human factor into account when evaluating generated white-box tests.Comment: 13 pages, 7 figure

    Automatic Quality Estimation for ASR System Combination

    Get PDF
    Recognizer Output Voting Error Reduction (ROVER) has been widely used for system combination in automatic speech recognition (ASR). In order to select the most appropriate words to insert at each position in the output transcriptions, some ROVER extensions rely on critical information such as confidence scores and other ASR decoder features. This information, which is not always available, highly depends on the decoding process and sometimes tends to over estimate the real quality of the recognized words. In this paper we propose a novel variant of ROVER that takes advantage of ASR quality estimation (QE) for ranking the transcriptions at "segment level" instead of: i) relying on confidence scores, or ii) feeding ROVER with randomly ordered hypotheses. We first introduce an effective set of features to compensate for the absence of ASR decoder information. Then, we apply QE techniques to perform accurate hypothesis ranking at segment-level before starting the fusion process. The evaluation is carried out on two different tasks, in which we respectively combine hypotheses coming from independent ASR systems and multi-microphone recordings. In both tasks, it is assumed that the ASR decoder information is not available. The proposed approach significantly outperforms standard ROVER and it is competitive with two strong oracles that e xploit prior knowledge about the real quality of the hypotheses to be combined. Compared to standard ROVER, the abs olute WER improvements in the two evaluation scenarios range from 0.5% to 7.3%

    Information-theoretic lower bounds on the oracle complexity of stochastic convex optimization

    Full text link
    Relative to the large literature on upper bounds on complexity of convex optimization, lesser attention has been paid to the fundamental hardness of these problems. Given the extensive use of convex optimization in machine learning and statistics, gaining an understanding of these complexity-theoretic issues is important. In this paper, we study the complexity of stochastic convex optimization in an oracle model of computation. We improve upon known results and obtain tight minimax complexity estimates for various function classes
    corecore