8,429 research outputs found

    Towards Symbolic Model-Based Mutation Testing: Combining Reachability and Refinement Checking

    Full text link
    Model-based mutation testing uses altered test models to derive test cases that are able to reveal whether a modelled fault has been implemented. This requires conformance checking between the original and the mutated model. This paper presents an approach for symbolic conformance checking of action systems, which are well-suited to specify reactive systems. We also consider nondeterminism in our models. Hence, we do not check for equivalence, but for refinement. We encode the transition relation as well as the conformance relation as a constraint satisfaction problem and use a constraint solver in our reachability and refinement checking algorithms. Explicit conformance checking techniques often face state space explosion. First experimental evaluations show that our approach has potential to outperform explicit conformance checkers.Comment: In Proceedings MBT 2012, arXiv:1202.582

    Your Proof Fails? Testing Helps to Find the Reason

    Full text link
    Applying deductive verification to formally prove that a program respects its formal specification is a very complex and time-consuming task due in particular to the lack of feedback in case of proof failures. Along with a non-compliance between the code and its specification (due to an error in at least one of them), possible reasons of a proof failure include a missing or too weak specification for a called function or a loop, and lack of time or simply incapacity of the prover to finish a particular proof. This work proposes a new methodology where test generation helps to identify the reason of a proof failure and to exhibit a counter-example clearly illustrating the issue. We describe how to transform an annotated C program into C code suitable for testing and illustrate the benefits of the method on comprehensive examples. The method has been implemented in STADY, a plugin of the software analysis platform FRAMA-C. Initial experiments show that detecting non-compliances and contract weaknesses allows to precisely diagnose most proof failures.Comment: 11 pages, 10 figure

    Automated metamorphic testing on the analyses of feature models

    Get PDF
    Copyright © 2010 Elsevier B.V. All rights reserved.Context: A feature model (FM) represents the valid combinations of features in a domain. The automated extraction of information from FMs is a complex task that involves numerous analysis operations, techniques and tools. Current testing methods in this context are manual and rely on the ability of the tester to decide whether the output of an analysis is correct. However, this is acknowledged to be time-consuming, error-prone and in most cases infeasible due to the combinatorial complexity of the analyses, this is known as the oracle problem.Objective: In this paper, we propose using metamorphic testing to automate the generation of test data for feature model analysis tools overcoming the oracle problem. An automated test data generator is presented and evaluated to show the feasibility of our approach.Method: We present a set of relations (so-called metamorphic relations) between input FMs and the set of products they represent. Based on these relations and given a FM and its known set of products, a set of neighbouring FMs together with their corresponding set of products are automatically generated and used for testing multiple analyses. Complex FMs representing millions of products can be efficiently created by applying this process iteratively.Results: Our evaluation results using mutation testing and real faults reveal that most faults can be automatically detected within a few seconds. Two defects were found in FaMa and another two in SPLOT, two real tools for the automated analysis of feature models. Also, we show how our generator outperforms a related manual suite for the automated analysis of feature models and how this suite can be used to guide the automated generation of test cases obtaining important gains in efficiency.Conclusion: Our results show that the application of metamorphic testing in the domain of automated analysis of feature models is efficient and effective in detecting most faults in a few seconds without the need for a human oracle.This work has been partially supported by the European Commission(FEDER)and Spanish Government under CICYT project SETI(TIN2009-07366)and the Andalusian Government project ISABEL(TIC-2533)

    Artificial table testing dynamically adaptive systems

    Get PDF
    Dynamically Adaptive Systems (DAS) are systems that modify their behavior and structure in response to changes in their surrounding environment. Critical mission systems increasingly incorporate adaptation and response to the environment; examples include disaster relief and space exploration systems. These systems can be decomposed in two parts: the adaptation policy that specifies how the system must react according to the environmental changes and the set of possible variants to reconfigure the system. A major challenge for testing these systems is the combinatorial explosions of variants and envi-ronment conditions to which the system must react. In this paper we focus on testing the adaption policy and propose a strategy for the selection of envi-ronmental variations that can reveal faults in the policy. Artificial Shaking Table Testing (ASTT) is a strategy inspired by shaking table testing (STT), a technique widely used in civil engineering to evaluate building's structural re-sistance to seismic events. ASTT makes use of artificial earthquakes that simu-late violent changes in the environmental conditions and stresses the system adaptation capability. We model the generation of artificial earthquakes as a search problem in which the goal is to optimize different types of envi-ronmental variations

    Improved test quality using robust unique input/output circuit sequences (UIOCs)

    Get PDF
    In finite state machine (FSM) based testing, the problem of fault masking in the unique input/ output (UIO) sequence may degrade the test performance of the UIO based methods. This paper investigates this problem and proposes the use of a new type of unique input/output circuit (UIOC) sequence for state verification, which may help to overcome the drawbacks that exist in the UIO based techniques. When constructing a UIOC, overlap and internal state observation schema are used to increase the robustness of a test sequence. Test quality is compared by using the forward UIO method (F-method), the backward UIO method (B-method) and the UIOC method (C-method) separately. Robustness of the UIOCs constructed by the algorithm given in this paper is also compared with those constructed by the algorithm given previously. Experimental results suggest that the C-method outperforms the F- and the B-methods and the UIOCs constructed by the Algorithm given in this paper, are more robust than those constructed by other proposed algorithms

    Mutation testing from probabilistic finite state machines

    Get PDF
    Mutation testing traditionally involves mutating a program in order to produce a set of mutants and using these mutants in order to either estimate the effectiveness of a test suite or to drive test generation. Recently, however, this approach has been applied to specifications such as those written as finite state machines. This paper extends mutation testing to finite state machine models in which transitions have associated probabilities. The paper describes several ways of mutating a probabilistic finite state machine (PFSM) and shows how test sequences that distinguish between a PFSM and its mutants can be generated. Testing then involves applying each test sequence multiple times, observing the resultant output sequences and using results from statistical sampling theory in order to compare the observed frequency of each output sequence with that expected
    corecore