3,853 research outputs found

    Process of Fingerprint Authentication using Cancelable Biohashed Template

    Get PDF
    Template protection using cancelable biometrics prevents data loss and hacking stored templates, by providing considerable privacy and security. Hashing and salting techniques are used to build resilient systems. Salted password method is employed to protect passwords against different types of attacks namely brute-force attack, dictionary attack, rainbow table attacks. Salting claims that random data can be added to input of hash function to ensure unique output. Hashing salts are speed bumps in an attacker’s road to breach user’s data. Research proposes a contemporary two factor authenticator called Biohashing. Biohashing procedure is implemented by recapitulated inner product over a pseudo random number generator key, as well as fingerprint features that are a network of minutiae. Cancelable template authentication used in fingerprint-based sales counter accelerates payment process. Fingerhash is code produced after applying biohashing on fingerprint. Fingerhash is a binary string procured by choosing individual bit of sign depending on a preset threshold. Experiment is carried using benchmark FVC 2002 DB1 dataset. Authentication accuracy is found to be nearly 97\%. Results compared with state-of art approaches finds promising

    Symmetries of Riemann surfaces and magnetic monopoles

    Get PDF
    This thesis studies, broadly, the role of symmetry in elucidating structure. In particular, I investigate the role that automorphisms of algebraic curves play in three specific contexts; determining the orbits of theta characteristics, influencing the geometry of the highly-symmetric Bring’s curve, and in constructing magnetic monopole solutions. On theta characteristics, I show how to turn questions on the existence of invariant characteristics into questions of group cohomology, compute comprehensive tables of orbit decompositions for curves of genus 9 or less, and prove results on the existence of infinite families of curves with invariant characteristics. On Bring’s curve, I identify key points with geometric significance on the curve, completely determine the structure of the quotients by subgroups of automorphisms, finding new elliptic curves in the process, and identify the unique invariant theta characteristic on the curve. With respect to monopoles, I elucidate the role that the Hitchin conditions play in determining monopole spectral curves, the relation between these conditions and the automorphism group of the curve, and I develop the theory of computing Nahm data of symmetric monopoles. As such I classify all 3-monopoles whose Nahm data may be solved for in terms of elliptic functions

    Colossal Trajectory Mining: A unifying approach to mine behavioral mobility patterns

    Get PDF
    Spatio-temporal mobility patterns are at the core of strategic applications such as urban planning and monitoring. Depending on the strength of spatio-temporal constraints, different mobility patterns can be defined. While existing approaches work well in the extraction of groups of objects sharing fine-grained paths, the huge volume of large-scale data asks for coarse-grained solutions. In this paper, we introduce Colossal Trajectory Mining (CTM) to efficiently extract heterogeneous mobility patterns out of a multidimensional space that, along with space and time dimensions, can consider additional trajectory features (e.g., means of transport or activity) to characterize behavioral mobility patterns. The algorithm is natively designed in a distributed fashion, and the experimental evaluation shows its scalability with respect to the involved features and the cardinality of the trajectory dataset

    A virtual element method for the solution of 2D time-harmonic elastic wave equations via scalar potentials

    Get PDF
    In this paper, we propose and analyse a numerical method to solve 2D Dirichlet timeharmonic elastic wave equations. The procedure is based on the decoupling of the elastic vector field into scalar Pressure (P-) and Shear (S-) waves via a suitable Helmholtz– Hodge decomposition. For the approximation of the two scalar potentials we apply a virtual element method associated with different mesh sizes and degrees of accuracy. We provide for the stability of the method and a convergence error estimate in the L 2 -norm for the displacement field, in which the contributions to the error associated with the P- and S- waves are separated. In contrast to standard approaches that are directly applied to the vector formulation, this procedure allows for keeping track of the two different wave numbers, that depend on the P- and S- speeds of propagation and, therefore, for using a high-order method for the approximation of the wave associated with the higher wave number. Some numerical tests, validating the theoretical results and showing the good performance of the proposed approach, are presented

    A novel segmentation approach for crop modeling using a plenoptic light-field camera : going from 2D to 3D

    Get PDF
    OMICASCrop phenotyping is a desirable task in crop characterization since it allows the farmer to make early decisions, and therefore be more productive. This research is motivated by the generation of tools for rice crop phenotyping within the OMICAS research ecosystem framework. It proposes implementing the image process- ing technologies and artificial intelligence technics through a multisensory approach with multispectral information. Three main stages are covered: (i) A segmentation approach that allows identifying the biological material associated with plants, and the main contri- bution is the GFKuts segmentation approach; (ii) a strategy that allows the development of sensory fusion between three different cameras, a 3D camera, an infrared multispectral camera, and a thermal multispectral camera, this stage is developed through a complex object detection approach; and (iii) the characterization of a 4D model that generates topological relationships with the information of the point cloud, the main contribution of this strategy is the improvement of the point cloud captured by the 3D sensor, in this sense, this stage improves the acquisition of any 3D sensor. This research presents a development that receives information from multiple sensors, especially infrared 2D, and generates a single 4D model in geometric space [X, Y, Z]. This model integrates the color information of 5 channels and topological information, relating the points in space. Overall, the research allows the integration of the 3D information from any sensor\technology and the multispectral channels from any multispectral camera, to generate direct non-invasive measurements on the plant.MagĂ­ster en IngenierĂ­a ElectrĂłnicaMagĂ­ster en Inteligencia ArtificialMaestrĂ­ahttps://orcid.org/ 0000-0002-1477-6825https://scholar.google.com/citations?user=cpuxcwgAAAAJ&hl=eshttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=000155691

    Jacobian-Scaled K-means Clustering for Physics-Informed Segmentation of Reacting Flows

    Full text link
    This work introduces Jacobian-scaled K-means (JSK-means) clustering, which is a physics-informed clustering strategy centered on the K-means framework. The method allows for the injection of underlying physical knowledge into the clustering procedure through a distance function modification: instead of leveraging conventional Euclidean distance vectors, the JSK-means procedure operates on distance vectors scaled by matrices obtained from dynamical system Jacobians evaluated at the cluster centroids. The goal of this work is to show how the JSK-means algorithm -- without modifying the input dataset -- produces clusters that capture regions of dynamical similarity, in that the clusters are redistributed towards high-sensitivity regions in phase space and are described by similarity in the source terms of samples instead of the samples themselves. The algorithm is demonstrated on a complex reacting flow simulation dataset (a channel detonation configuration), where the dynamics in the thermochemical composition space are known through the highly nonlinear and stiff Arrhenius-based chemical source terms. Interpretations of cluster partitions in both physical space and composition space reveal how JSK-means shifts clusters produced by standard K-means towards regions of high chemical sensitivity (e.g., towards regions of peak heat release rate near the detonation reaction zone). The findings presented here illustrate the benefits of utilizing Jacobian-scaled distances in clustering techniques, and the JSK-means method in particular displays promising potential for improving former partition-based modeling strategies in reacting flow (and other multi-physics) applications

    The anisotropic grain size effect on the mechanical response of polycrystals: The role of columnar grain morphology in additively manufactured metals

    Full text link
    Additively manufactured (AM) metals exhibit highly complex microstructures, particularly with respect to grain morphology which typically features heterogeneous grain size distribution, anomalous and anisotropic grain shapes, and the so-called columnar grains. In general, the conventional morphological descriptors are not suitable to represent complex and anisotropic grain morphology of AM microstructures. The principal aspect of microstructural grain morphology is the state of grain boundary spacing or grain size whose effect on the mechanical response is known to be crucial. In this paper, we formally introduce the notions of axial grain size and grain size anisotropy as robust morphological descriptors which can concisely represent highly complex grain morphologies. We instantiated a discrete sample of polycrystalline aggregate as a representative volume element (RVE) which has random crystallographic orientation and misorientation distributions. However, the instantiated RVE incorporates the typical morphological features of AM microstructures including distinctive grain size heterogeneity and anisotropic grain size owing to its pronounced columnar grain morphology. We ensured that any anisotropy arising in the macroscopic mechanical response of the instantiated sample is mainly associated with its underlying anisotropic grain size. The RVE was then used for meso-scale full-field crystal plasticity simulations corresponding to uniaxial tensile deformation along different axes via a spectral solver and a physics-based crystal plasticity constitutive model. Through the numerical analyses, we were able to isolate the contribution of anisotropic grain size to the anisotropy in the mechanical response of polycrystalline aggregates, particularly those with the characteristic complex grain morphology of AM metals. Such a contribution can be described by an inverse square relation

    Ground State Properties of Quantum Skyrmions described by Neural Network Quantum States

    Full text link
    We investigate the ground state properties of quantum skyrmions in a ferromagnet using variational Monte Carlo with the neural network quantum state as variational ansatz. We study the ground states of a two-dimensional quantum Heisenberg model in the presence of the Dzyaloshinskii-Moriya interaction (DMI). We show that the ground state accommodates a quantum skyrmion for a large range of parameters, especially at large DMI. The spins in these quantum skyrmions are weakly entangled, and the entanglement increases with decreasing DMI. We also find that the central spin is completely disentangled from the rest of the lattice, establishing a non-destructive way of detecting this type of skyrmion by local magnetization measurements. While neural networks are well suited to detect weakly entangled skyrmions with large DMI, they struggle to describe skyrmions in the small DMI regime due to nearly degenerate ground states and strong entanglement. In this paper, we propose a method to identify this regime and a technique to alleviate the problem. Finally, we analyze the workings of the neural network and explore its limits by pruning. Our work shows that neural network quantum states can be efficiently used to describe the quantum magnetism of large systems exceeding the size manageable in exact diagonalization by far.Comment: 12 pages, 6 figure

    High-statistics pedestrian dynamics on stairways and their probabilistic fundamental diagrams

    Full text link
    Staircases play an essential role in crowd dynamics, allowing pedestrians to flow across large multi-level public facilities such as transportation hubs, and office buildings. Achieving a robust understanding of pedestrian behavior in these facilities is a key societal necessity. What makes this an outstanding scientific challenge is the extreme randomness intrinsic to pedestrian behavior. Any quantitative understanding necessarily needs to be probabilistic, including average dynamics and fluctuations. In this work, we analyze data from an unprecedentedly high statistics year-long pedestrian tracking campaign, in which we anonymously collected millions of trajectories across a staircase within Eindhoven train station (NL). Made possible thanks to a state-of-the-art, faster than real-time, computer vision approach hinged on 3D depth imaging, and YOLOv7-based depth localization. We consider both free-stream conditions, i.e. pedestrians walking in undisturbed, and trafficked conditions, uni/bidirectional flows. We report the position vs density, considering the crowd as a 'compressible' physical medium. We show how pedestrians willingly opt to occupy fewer space than available, accepting a certain degree of compressibility. This is a non-trivial physical feature of pedestrian dynamics and we introduce a novel way to quantify this effect. As density increases, pedestrians strive to keep a minimum distance d = 0.6 m from the person in front of them. Finally, we establish first-of-kind fully resolved probabilistic fundamental diagrams, where we model the pedestrian walking velocity as a mixture of a slow and fast-paced component. Notably, averages and modes of velocity distribution turn out to be substantially different. Our results, including probabilistic parametrizations based on few variables, are key towards improved facility design and realistic simulation of pedestrians on staircases
    • 

    corecore