1,470 research outputs found

    Mobile Communication Networks and Digital Television Broadcasting Systems in the Same Frequency Bands – Advanced Co-Existence Scenarios

    Get PDF
    The increasing demand for wireless multimedia services provided by modern communication systems with stable services is a key feature of advanced markets. On the other hand, these systems can many times operate in a neighboring or in the same frequency bands. Therefore, numerous unwanted co-existence scenarios can occur. The aim of this paper is to summarize our results which were achieved during exploration and measurement of the co-existences between still used and upcoming mobile networks (from GSM to LTE) and digital terrestrial television broadcasting (DVB) systems. For all of these measurements and their evaluation universal measurement testbed has been proposed and used. Results presented in this paper are a significant part of our activities in work package WP5 in the ENIAC JU project “Agile RF Transceivers and Front-Ends for Future Smart Multi-Standard Communications Applications (ARTEMOS)”

    Analysis and Simulation of the Signals Transmission in the DVB-H/SH Standards

    Get PDF
    Tato disertačnĂ­ prĂĄce se zabĂœvĂĄ analĂœzou, simulacĂ­ a měƙenĂ­m zpracovĂĄnĂ­ a pƙenosu signĂĄlĆŻ digitĂĄlnĂ­ televize pro pƙíjem mobilnĂ­ho TV vysĂ­lĂĄnĂ­ ve standardech DVB-H a DVB-SH. Tyto standardy vychĂĄzejĂ­ z pƙedpokladu, ĆŸe pƙíjem signĂĄlu je charakterizovĂĄn modely pƙenosovĂœch kanĂĄlĆŻ s vĂ­cecestnĂœm ơíƙenĂ­m. Tyto, tzv. ĂșnikovĂ© kanĂĄly, jsou charakterizovĂĄny hlavně zpoĆŸděnĂ­m a ziskem jednotlivĂœch cest. V zĂĄvislosti na dalĆĄĂ­ch parametrech (rychlost pƙijĂ­mače, DopplerovskĂ© spektrum), je moĆŸnĂ© rozdělit ĂșnikovĂ© kanĂĄly do tƙech hlavnĂ­ch skupin: mobilnĂ­, pƙenosnĂ© a fixnĂ­. DĂĄ se pƙedpoklĂĄdat, ĆŸe v rĆŻznĂœch modelech kanĂĄlĆŻ bude pƙenĂĄĆĄenĂœ signĂĄl rĆŻzně ovlivněn. Proto je potƙebnĂ© najĂ­t optimĂĄlnĂ­ parametry systĂ©mĆŻ (DVB-H/SH) pro kvalitnĂ­ pƙíjem vysĂ­lanĂœch sluĆŸeb mobilnĂ­ televize, coĆŸ je hlavnĂ­m cĂ­lem tĂ©to disertačnĂ­ prĂĄci. Pro tento Ășčel byly vytvoƙeny dvě vhodnĂ© aplikace (jedna pro DVB-H a jedna pro DVB-SH) s GUI v prostƙedĂ­ MATLAB, kterĂ© umoĆŸĆˆujĂ­ simulovat a analyzovat mĂ­ru zkreslenĂ­ signĂĄlu v pƙípadě mobilnĂ­ch, pƙenosnĂœch a fixnĂ­ch scĂ©náƙƯ pƙenosu. NavĂ­c, tyto aplikace obsahujĂ­ i druhĂœ samostatnĂœ simulĂĄtor pro nastavenĂ­ a modifikaci parametrĆŻ jednotlivĂœch pƙenosovĂœch cest. DĂ­ky tomu je moĆŸnĂ© zhodnotit vliv parametrĆŻ celĂ©ho systĂ©mu a kanĂĄlovĂœch modelĆŻ na dosaĆŸenou chybovost (BER a MER) a kvalitu pƙenosu. Ve vĆĄech pƙenosovĂœch scĂ©náƙích (v zĂĄvislosti na poměru C/N) byly zĂ­skanĂ©, vyhodnocenĂ© a diskutovanĂ© zkreslenĂ­ signĂĄlĆŻ. NavĂ­c, u standardu DVB-H, vĆĄechny zĂ­skanĂ© vĂœsledky ze simulacĂ­ byly ověƙeny měƙenĂ­m. RozdĂ­ly mezi dosaĆŸenĂœmi vĂœsledky (simulace a měƙenĂ­) byly rovnÄ›ĆŸ podrobeny diskuzi. Tuto disertačnĂ­ prĂĄci je moĆŸnĂ© rozdělit do čtyƙ hlavnĂ­ch částĂ­. PrvnĂ­ část disertačnĂ­ prĂĄce se zabĂœvĂĄ reĆĄerĆĄĂ­ současnĂ©ho vĂœvoje v oblasti digitĂĄlnĂ­ho televiznĂ­ho vysĂ­lĂĄnĂ­ na mobilnĂ­ terminĂĄly ve standardech DVB-H/SH. Na konci tĂ©to části jsou jasně popsĂĄny cĂ­le tĂ©to disertačnĂ­ prĂĄce. DruhĂĄ část prĂĄce je zaměƙenĂĄ na stručnĂœ popis blokovĂ©ho diagramu vysĂ­lačƯ v obou standardech DVB-H/SH. DĂĄle jsou stručně popsĂĄny modely pƙenosovĂœch kanĂĄlĆŻ, kterĂ© se pouĆŸĂ­vajĂ­ pro modelovĂĄnĂ­ pƙenosu signĂĄlu. StručnĂœ popis vytvoƙenĂœch aplikacĂ­, i s vĂœvojovĂœm diagramem, kterĂ© jsou vhodnĂ© pro simulaci a analĂœzu pƙenosu v DVB-H/SH, jsou popsĂĄny v tƙetĂ­ části prĂĄce. ČtvrtĂĄ a nejdelĆĄĂ­ část tĂ©to disertačnĂ­ prĂĄce se zabĂœvĂĄ vyhodnocenĂ­m zĂ­skanĂœch vĂœsledkĆŻ ze simulacĂ­ a měƙenĂ­.This dissertation thesis deals with the analysis, simulation and measurement of the signal processing and transmission in DVB-H and DVB-SH standards. These standards are based on the assumption that signal reception is characterized by the transmission channels with echoes. These, so called fading channels, are mainly characterized by the path delays and path losses. Depending on the other, additional features (speed of the receiver, Doppler spectrum, etc.), it can be possible divided these channels onto three main groups: mobile, portable and fixed. Of course, signal transmission in different transmission channel models are affected differently. Therefore, it is needed found the optimal system parameters in both, DVB-H and DVB-SH standards, for the quality reception of the broadcasted mobile TV services, which is the main goal of this thesis. For this purpose, two appropriate applications (one for DVB-H and one for DVB-SH) with GUI were created in MATLAB, which enable simulated and analyzed the signal distortions in mobile, portable and fixed transmission scenarios. Moreover, these applications also contain a second application with GUI for the easy set and modification of the parameters of the used channel models. Therefore, it is possible to evaluate the effect of parameters of whole system and channel models on the achieved error rate (BER and MER) and quality of the transmission. In all mentioned transmission scenarios, the signal distortions (depending on the Carrier-to-Noise ratio) were obtained, evaluated and discussed in this dissertation thesis. Furthermore, in case of DVB-H, all obtained results from the simulations, were verified by the measuring. Differences between the obtained results (simulation and measuring) are also discussed. This dissertation thesis can be divided into four main parts. The first part of this dissertation thesis, after the short introduction, deals with present state-of-the-art and literature survey in mobile broadcast DVB-H/SH standards. At the end of this part are clearly outlined the main aims of this dissertation thesis. Second part is focused on the brief description of the functional block diagram of transmitters in both, DVB-H/SH standards. Furthermore, there are briefly described the transmission fading channel models, which are commonly used for the modeling of the signal transmission. The brief description of program applications with flowcharts, appropriate for the simulation of the transmission in the DVB-H/SH standards, are presented and described in the third part of this thesis. Finally, the fourth and longest part of this thesis is focused on the evaluation and comparison of obtained results from the simulations and measurements.

    A survey of digital television broadcast transmission techniques

    No full text
    This paper is a survey of the transmission techniques used in digital television (TV) standards worldwide. With the increase in the demand for High-Definition (HD) TV, video-on-demand and mobile TV services, there was a real need for more bandwidth-efficient, flawless and crisp video quality, which motivated the migration from analogue to digital broadcasting. In this paper we present a brief history of the development of TV and then we survey the transmission technology used in different digital terrestrial, satellite, cable and mobile TV standards in different parts of the world. First, we present the Digital Video Broadcasting standards developed in Europe for terrestrial (DVB-T/T2), for satellite (DVB-S/S2), for cable (DVB-C) and for hand-held transmission (DVB-H). We then describe the Advanced Television System Committee standards developed in the USA both for terrestrial (ATSC) and for hand-held transmission (ATSC-M/H). We continue by describing the Integrated Services Digital Broadcasting standards developed in Japan for Terrestrial (ISDB-T) and Satellite (ISDB-S) transmission and then present the International System for Digital Television (ISDTV), which was developed in Brazil by adopteding the ISDB-T physical layer architecture. Following the ISDTV, we describe the Digital Terrestrial television Multimedia Broadcast (DTMB) standard developed in China. Finally, as a design example, we highlight the physical layer implementation of the DVB-T2 standar

    Analysis of DVB-H network coverage with the application of transmit diversity

    Get PDF
    This paper investigates the effects of the Cyclic Delay Diversity (CDD) transmit diversity scheme on DVB-H networks. Transmit diversity improves reception and Quality of Service (QoS) in areas of poor coverage such as sparsely populated or obscured locations. The technique not only povides robust reception in mobile environments thus improving QoS, but it also reduces network costs in terms of the transmit power, number of infrastructure elements, antenna height and the frequency reuse factor over indoor and outdoor environments. In this paper, the benefit and effectiveness of CDD transmit diversity is tackled through simulation results for comparison in several scenarios of coverage in DVB-H networks. The channel model used in the simulations is based on COST207 and a basic radio planning technique is used to illustrate the main principles developed in this paper. The work reported in this paper was supported by the European Commission IST project—PLUTO (Physical Layer DVB Transmission Optimization)

    Diversity gain for DVB-H by using transmitter/receiver cyclic delay diversity

    Get PDF
    The objective of this paper is to investigate different diversity techniques for broadcast networks that will minimize the complexity and improve received SNR of broadcast systems. Resultant digital broadcast networks would require fewer transmitter sites and thus be more cost-effective and have less environmental impact. The techniques can be applied to DVB-T, DVB-H and DAB systems that use Orthogonal Frequency Division Multplexing (OFDM). These are key radio broadcast network technologies, which are expected to complement emerging technologies such as WiMAX and future 4G networks for delivery of broadband content. Transmitter and receiver diversity technologies can increase the frequency and time selectivity of the resulting channel transfer function at the receiver. Diversity exploits the statistical nature of fading due to multipath and reduces the likelihood of deep fading by providing a diversity of transmission signals. Multiple signals are transmitted in such a way as to ensure that several signals reach the receiver each with uncorrelated fading. Transmit diversity is more practical than receive diversity due to the difficulty of locating two receive antennas far enough apart in a small mobile device. The schemes examined here comply with existing DVB standards and can be incorporated into existing systems without change. The diversity techniques introduced in this paper are applied to the DVB-H system. Bit error performance investigations were conducted by simulation for different DVB-H and diversity parameters

    Performance of an Echo Canceller and Channel Estimator for On-Channel Repeaters in DVB-T/H Networks

    Get PDF
    This paper investigates the design and performance of an FIR echo canceller for on-channel repeaters in DVB-T/H network within the framework of the PLUTO project. The possible approaches for echo cancellation are briefly reviewed and the main guidelines for the design of such systems are presented. The main system parameters are discussed. The performance of an FIR echo canceller based on an open loop feedforward approach for channel estimation is tested for different radio channel conditions and for different number of taps of the FIR filter. It is shown that a minimum number of taps is recommended to achieve a certain mean rejection ratio or isolation depending on the type of channel. The expected degradation in performance due to the use of fixed point rather than floating point arithmetic in hardware implementation is presented for different number of bits. Channel estimation based on training sequences is investigated. The performance of Maximum Length Sequences and Constant Amplitude Zero Autocorrelation (CAZAC) Sequences is compared for different channels. Recommendations are given for training sequence type, length and level for DVB-T/H on-channel repeater deployment

    Design and Validation of a Software Defined Radio Testbed for DVB-T Transmission

    Get PDF
    This paper describes the design and validation of a Software Defined Radio (SDR) testbed, which can be used for Digital Television transmission using the Digital Video Broadcasting - Terrestrial (DVB-T) standard. In order to generate a DVB-T-compliant signal with low computational complexity, we design an SDR architecture that uses the C/C++ language and exploits multithreading and vectorized instructions. Then, we transmit the generated DVB-T signal in real time, using a common PC equipped with multicore central processing units (CPUs) and a commercially available SDR modem board. The proposed SDR architecture has been validated using fixed TV sets, and portable receivers. Our results show that the proposed SDR architecture for DVB-T transmission is a low-cost low-complexity solution that, in the worst case, only requires less than 22% of CPU load and less than 170 MB of memory usage, on a 3.0 GHz Core i7 processor. In addition, using the same SDR modem board, we design an off-line software receiver that also performs time synchronization and carrier frequency offset estimation and compensation
    • 

    corecore