2,342 research outputs found

    Terrain classification in SAR images using principal components analysis and neural networks

    Get PDF
    Includes bibliographical references.The development of a neural network-based classifier for classifying three distinct scenes (urban, park and water) from several polarized SAR images of San Francisco Bay area is discussed. The principal component (PC) scheme or Karhunen-Loeve (KL) transform is used to extract the salient features of the input data, and to reduce the dimensionality of the feature space prior to the application to the neural networks. Employing PC scheme along with polarized images used in this study, led to substantial improvements in the classification rates when compared with previous studies. When a combined polarization architecture is used the classification rate for water, urban and park areas improved to 100%, 98.7%, and 96.1%, respectively

    Remote sensing of earth terrain

    Get PDF
    Abstracts from 46 refereed journal and conference papers are presented for research on remote sensing of earth terrain. The topics covered related to remote sensing include the following: mathematical models, vegetation cover, sea ice, finite difference theory, electromagnetic waves, polarimetry, neural networks, random media, synthetic aperture radar, electromagnetic bias, and others

    Remote sensing of earth terrain

    Get PDF
    In remote sensing, the encountered geophysical media such as agricultural canopy, forest, snow, or ice are inhomogeneous and contain scatters in a random manner. Furthermore, weather conditions such as fog, mist, or snow cover can intervene the electromagnetic observation of the remotely sensed media. In the modelling of such media accounting for the weather effects, a multi-layer random medium model has been developed. The scattering effects of the random media are described by three-dimensional correlation functions with variances and correlation lengths corresponding to the fluctuation strengths and the physical geometry of the inhomogeneities, respectively. With proper consideration of the dyadic Green's function and its singularities, the strong fluctuation theory is used to calculate the effective permittivities which account for the modification of the wave speed and attenuation in the presence of the scatters. The distorted Born approximation is then applied to obtain the correlations of the scattered fields. From the correlation of the scattered field, calculated is the complete set of scattering coefficients for polarimetric radar observation or brightness temperature in passive radiometer applications. In the remote sensing of terrestrial ecosystems, the development of microwave remote sensing technology and the potential of SAR to measure vegetation structure and biomass have increased effort to conduct experimental and theoretical researches on the interactions between microwave and vegetation canopies. The overall objective is to develop inversion algorithms to retrieve biophysical parameters from radar data. In this perspective, theoretical models and experimental data are methodically interconnected in the following manner: Due to the complexity of the interactions involved, all theoretical models have limited domains of validity; the proposed solution is to use theoretical models, which is validated by experiments, to establish the region in which the radar response is most sensitive to the parameters of interest; theoretically simulated data will be used to generate simple invertible models over the region. For applications to the remote sensing of sea ice, the developed theoretical models need to be tested with experimental measurements. With measured ground truth such as ice thickness, temperature, salinity, and structure, input parameters to the theoretical models can be obtained to calculate the polarimetric scattering coefficients for radars or brightness temperature for radiometers and then compare theoretical results with experimental data. Validated models will play an important role in the interpretation and classification of ice in monitoring global ice cover from space borne remote sensors in the future. We present an inversion algorithm based on a recently developed inversion method referred to as the Renormalized Source-Type Integral Equation approach. The objective of this method is to overcome some of the limitations and difficulties of the iterative Born technique. It recasts the inversion, which is nonlinear in nature, in terms of the solution of a set of linear equations; however, the final inversion equation is still nonlinear. The derived inversion equation is an exact equation which sums up the iterative Neuman (or Born) series in a closed form and, thus, is a valid representation even in the case when the Born series diverges; hence, the name Renormalized Source-Type Integral Equation Approach

    Convolutional Neural Networks - Generalizability and Interpretations

    Get PDF

    Image fusion techniqes for remote sensing applications

    Get PDF
    Image fusion refers to the acquisition, processing and synergistic combination of information provided by various sensors or by the same sensor in many measuring contexts. The aim of this survey paper is to describe three typical applications of data fusion in remote sensing. The first study case considers the problem of the Synthetic Aperture Radar (SAR) Interferometry, where a pair of antennas are used to obtain an elevation map of the observed scene; the second one refers to the fusion of multisensor and multitemporal (Landsat Thematic Mapper and SAR) images of the same site acquired at different times, by using neural networks; the third one presents a processor to fuse multifrequency, multipolarization and mutiresolution SAR images, based on wavelet transform and multiscale Kalman filter. Each study case presents also results achieved by the proposed techniques applied to real data

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    Complex land cover classifications and physical properties retrieval of tropical forests using multi-source remote sensing

    Get PDF
    The work presented in this thesis mainly focuses on two subjects related to the application of remote sensing data: (1) for land cover classification combining optical sensor, texture features generated from spectral information and synthetic aperture radar (SAR) features, and (2) to develop a non-destructive approach for above ground biomass (AGB) and forest attributes estimation employing multi-source remote sensing data (i.e. optical data, SAR backscatter) combined with in-situ data. Information provided by reliable land cover map is useful for management of forest resources to support sustainable forest management, whereas the generation of the non-destructive approach to model forest biophysical properties (e.g. AGB and stem volume) is required to assess the forest resources more efficiently and cost-effective, and coupled with remote sensing data the model can be applied over large forest areas. This work considers study sites over tropical rain forest landscape in Indonesia characterized by different successional stages and complex vegetation structure including tropical peatland forests. The thesis begins with a brief introduction and the state of the art explaining recent trends on monitoring and modeling of forest resources using remote sensing data and approach. The research works on the integration of spectral information and texture features for forest cover mapping is presented subsequently, followed by development of a non-destructive approach for AGB and forest parameters predictions and modeling. Ultimately, this work evaluates the potential of mosaic SAR data for AGB modeling and the fusion of optical and SAR data for peatlands discrimination. The results show that the inclusion of geostatistics texture features improved the classification accuracy of optical Landsat ETM data. Moreover, the fusion of SAR and optical data enhanced the peatlands discrimination over tropical peat swamp forest. For forest stand parameters modeling, neural networks method resulted in lower error estimate than standard multi-linear regression technique, and the combination of non-destructive measurement (i.e. stem number) and remote sensing data improved the model accuracy. The up scaling of stem volume and biomass estimates using Kriging method and bi-temporal ETM image also provide favorable estimate results upon comparison with the land cover map.Die in dieser Dissertation präsentierten Ergebnisse konzentrieren sich hauptsächlich auf zwei Themen mit Bezug zur angewandten Fernerkundung: 1) Der Klassifizierung von Oberflächenbedeckung basierend auf der Verknüpfung von optischen Sensoren, Textureigenschaften erzeugt durch Spektraldaten und Synthetic-Aperture-Radar (SAR) features und 2) die Entwicklung eines nichtdestruktiven Verfahrens zur Bestimmung oberirdischer Biomasse (AGB) und weiterer Waldeigenschaften mittels multi-source Fernerkundungsdaten (optische Daten, SAR Rückstreuung) sowie in-situ Daten. Eine zuverlässige Karte der Landbedeckung dient der Unterstützung von nachhaltigem Waldmanagement, während eine nichtdestruktive Herangehensweise zur Modellierung von biophysikalischen Waldeigenschaften (z.B. AGB und Stammvolumen) für eine effiziente und kostengünstige Beurteilung der Waldressourcen notwendig ist. Durch die Kopplung mit Fernerkundungsdaten kann das Modell auf große Waldflächen übertragen werden. Die vorliegende Arbeit berücksichtigt Untersuchungsgebiete im tropischen Regenwald Indonesiens, welche durch verschiedene Regenerations- und Sukzessionsstadien sowie komplexe Vegetationsstrukturen, inklusive tropischer Torfwälder, gekennzeichnet sind. Am Anfang der Arbeit werden in einer kurzen Einleitung der Stand der Forschung und die neuesten Forschungstrends in der Überwachung und Modellierung von Waldressourcen mithilfe von Fernerkundungsdaten dargestellt. Anschließend werden die Forschungsergebnisse der Kombination von Spektraleigenschaften und Textureigenschaften zur Waldbedeckungskartierung erläutert. Desweiteren folgen Ergebnisse zur Entwicklung eines nichtdestruktiven Ansatzes zur Vorhersage und Modellierung von AGB und Waldeigenschaften, zur Auswertung von Mosaik- SAR Daten für die Modellierung von AGB, sowie zur Fusion optischer mit SAR Daten für die Identifizierung von Torfwäldern. Die Ergebnisse zeigen, dass die Einbeziehung von geostatistischen Textureigenschaften die Genauigkeit der Klassifikation von optischen Landsat ETM Daten gesteigert hat. Desweiteren führte die Fusion von SAR und optischen Daten zu einer Verbesserung der Unterscheidung zwischen Torfwäldern und tropischen Sumpfwäldern. Bei der Modellierung der Waldparameter führte die Neural-Network-Methode zu niedrigeren Fehlerschätzungen als die multiple Regressions. Die Kombination von nichtdestruktiven Messungen (z.B. Stammzahl) und Fernerkundungsdaten führte zu einer Steigerung der Modellgenauigkeit. Die Hochskalierung des Stammvolumens und Schätzungen der Biomasse mithilfe von Kriging und bi-temporalen ETM Daten lieferten positive Schätzergebnisse im Vergleich zur Landbedeckungskarte

    Innovative Techniques for the Retrieval of Earth’s Surface and Atmosphere Geophysical Parameters: Spaceborne Infrared/Microwave Combined Analyses

    Get PDF
    With the advent of the first satellites for Earth Observation: Landsat-1 in July 1972 and ERS-1 in May 1991, the discipline of environmental remote sensing has become, over time, increasingly fundamental for the study of phenomena characterizing the planet Earth. The goal of environmental remote sensing is to perform detailed analyses and to monitor the temporal evolution of different physical phenomena, exploiting the mechanisms of interaction between the objects that are present in an observed scene and the electromagnetic radiation detected by sensors, placed at a distance from the scene, operating at different frequencies. The analyzed physical phenomena are those related to climate change, weather forecasts, global ocean circulation, greenhouse gas profiling, earthquakes, volcanic eruptions, soil subsidence, and the effects of rapid urbanization processes. Generally, remote sensing sensors are of two primary types: active and passive. Active sensors use their own source of electromagnetic radiation to illuminate and analyze an area of interest. An active sensor emits radiation in the direction of the area to be investigated and then detects and measures the radiation that is backscattered from the objects contained in that area. Passive sensors, on the other hand, detect natural electromagnetic radiation (e.g., from the Sun in the visible band and the Earth in the infrared and microwave bands) emitted or reflected by the object contained in the observed scene. The scientific community has dedicated many resources to developing techniques to estimate, study and analyze Earth’s geophysical parameters. These techniques differ for active and passive sensors because they depend strictly on the type of the measured physical quantity. In my P.h.D. work, inversion techniques for estimating Earth’s surface and atmosphere geophysical parameters will be addressed, emphasizing methods based on machine learning (ML). In particular, the study of cloud microphysics and the characterization of Earth’s surface changes phenomenon are the critical points of this work
    corecore