544 research outputs found

    Visual Prediction of Rover Slip: Learning Algorithms and Field Experiments

    Get PDF
    Perception of the surrounding environment is an essential tool for intelligent navigation in any autonomous vehicle. In the context of Mars exploration, there is a strong motivation to enhance the perception of the rovers beyond geometry-based obstacle avoidance, so as to be able to predict potential interactions with the terrain. In this thesis we propose to remotely predict the amount of slip, which reflects the mobility of the vehicle on future terrain. The method is based on learning from experience and uses visual information from stereo imagery as input. We test the algorithm on several robot platforms and in different terrains. We also demonstrate its usefulness in an integrated system, onboard a Mars prototype rover in the JPL Mars Yard. Another desirable capability for an autonomous robot is to be able to learn about its interactions with the environment in a fully automatic fashion. We propose an algorithm which uses the robot's sensors as supervision for vision-based learning of different terrain types. This algorithm can work with noisy and ambiguous signals provided from onboard sensors. To be able to cope with rich, high-dimensional visual representations we propose a novel, nonlinear dimensionality reduction technique which exploits automatic supervision. The method is the first to consider supervised nonlinear dimensionality reduction in a probabilistic framework using supervision which can be noisy or ambiguous. Finally, we consider the problem of learning to recognize different terrains, which addresses the time constraints of an onboard autonomous system. We propose a method which automatically learns a variable-length feature representation depending on the complexity of the classification task. The proposed approach achieves a good trade-off between decrease in computational time and recognition performance.</p

    Automated 3D model generation for urban environments [online]

    Get PDF
    Abstract In this thesis, we present a fast approach to automated generation of textured 3D city models with both high details at ground level and complete coverage for birds-eye view. A ground-based facade model is acquired by driving a vehicle equipped with two 2D laser scanners and a digital camera under normal traffic conditions on public roads. One scanner is mounted horizontally and is used to determine the approximate component of relative motion along the movement of the acquisition vehicle via scan matching; the obtained relative motion estimates are concatenated to form an initial path. Assuming that features such as buildings are visible from both ground-based and airborne view, this initial path is globally corrected by Monte-Carlo Localization techniques using an aerial photograph or a Digital Surface Model as a global map. The second scanner is mounted vertically and is used to capture the 3D shape of the building facades. Applying a series of automated processing steps, a texture-mapped 3D facade model is reconstructed from the vertical laser scans and the camera images. In order to obtain an airborne model containing the roof and terrain shape complementary to the facade model, a Digital Surface Model is created from airborne laser scans, then triangulated, and finally texturemapped with aerial imagery. Finally, the facade model and the airborne model are fused to one single model usable for both walk- and fly-thrus. The developed algorithms are evaluated on a large data set acquired in downtown Berkeley, and the results are shown and discussed

    Proceedings of the 2011 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory

    Get PDF
    This book is a collection of 15 reviewed technical reports summarizing the presentations at the 2011 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory. The covered topics include image processing, optical signal processing, visual inspection, pattern recognition and classification, human-machine interaction, world and situation modeling, autonomous system localization and mapping, information fusion, and trust propagation in sensor networks

    Shallow neural networks for autonomous robots

    Get PDF
    The use of Neural Networks (NNs) in modern applications is already well established thanks to the technological advancements in processing units and Deep Learning (DL), as well as the availability of deployment frameworks and services. However, the embedding of these methods in robotic systems is problematic when it comes to field operations. The use of Graphics Processing Units (GPUs) for such networks requires high amounts of power which would lead to shortened operational times. This is not desired since autonomous robots already need to manage their power supply to accommodate the lengths of their missions which can extend from hours to days. While external processing is possible, real-time monitoring can become unfeasible where delays are present. This also applies to autonomous robots that are deployed for underwater or space missions. For these reasons, there is a requirement for shallow but robust NN-based solutions that enhance the autonomy of a robot. This dissertation focuses on the design and meticulous parametrization complemented by methods that explain hyper-parameter importance. This is performed in the context of different settings and problems for autonomous robots in field operations. The contribution of this thesis comes in the form of autonomy augmentation for robots through shallow NNs that can potentially be embedded in future systems carrying NN processing units. This is done by implementing neural architectures that use sensor data to extract representations for event identification and learn patterns for event anticipation. This work harnesses Long Short-Term Memory networks (LSTMs) as the underpinning framework for time series representation and interpretation. This has been tested in three significant problems found in field operations: hardware malfunction classification, survey trajectory classification and hazardous event forecast and detection

    Autonomous Exploration of Large-Scale Natural Environments

    Get PDF
    This thesis addresses issues which arise when using robotic platforms to explore large-scale, natural environments. Two main problems are identified: the volume of data collected by autonomous platforms and the complexity of planning surveys in large environments. Autonomous platforms are able to rapidly accumulate large data sets. The volume of data that must be processed is often too large for human experts to analyse exhaustively in a practical amount of time or in a cost-effective manner. This burden can create a bottleneck in the process of converting observations into scientifically relevant data. Although autonomous platforms can collect precisely navigated, high-resolution data, they are typically limited by finite battery capacities, data storage and computational resources. Deployments are also limited by project budgets and time frames. These constraints make it impractical to sample large environments exhaustively. To use the limited resources effectively, trajectories which maximise the amount of information gathered from the environment must be designed. This thesis addresses these problems. Three primary contributions are presented: a new classifier designed to accept probabilistic training targets rather than discrete training targets; a semi-autonomous pipeline for creating models of the environment; and an offline method for autonomously planning surveys. These contributions allow large data sets to be processed with minimal human intervention and promote efficient allocation of resources. In this thesis environmental models are established by learning the correlation between data extracted from a digital elevation model (DEM) of the seafloor and habitat categories derived from in-situ images. The DEM of the seafloor is collected using ship-borne multibeam sonar and the in-situ images are collected using an autonomous underwater vehicle (AUV). While the thesis specifically focuses on mapping and exploring marine habitats with an AUV, the research applies equally to other applications such as aerial and terrestrial environmental monitoring and planetary exploration

    Semantic Mapping of Road Scenes

    Get PDF
    The problem of understanding road scenes has been on the fore-front in the computer vision community for the last couple of years. This enables autonomous systems to navigate and understand the surroundings in which it operates. It involves reconstructing the scene and estimating the objects present in it, such as ‘vehicles’, ‘road’, ‘pavements’ and ‘buildings’. This thesis focusses on these aspects and proposes solutions to address them. First, we propose a solution to generate a dense semantic map from multiple street-level images. This map can be imagined as the bird’s eye view of the region with associated semantic labels for ten’s of kilometres of street level data. We generate the overhead semantic view from street level images. This is in contrast to existing approaches using satellite/overhead imagery for classification of urban region, allowing us to produce a detailed semantic map for a large scale urban area. Then we describe a method to perform large scale dense 3D reconstruction of road scenes with associated semantic labels. Our method fuses the depth-maps in an online fashion, generated from the stereo pairs across time into a global 3D volume, in order to accommodate arbitrarily long image sequences. The object class labels estimated from the street level stereo image sequence are used to annotate the reconstructed volume. Then we exploit the scene structure in object class labelling by performing inference over the meshed representation of the scene. By performing labelling over the mesh we solve two issues: Firstly, images often have redundant information with multiple images describing the same scene. Solving these images separately is slow, where our method is approximately a magnitude faster in the inference stage compared to normal inference in the image domain. Secondly, often multiple images, even though they describe the same scene result in inconsistent labelling. By solving a single mesh, we remove the inconsistency of labelling across the images. Also our mesh based labelling takes into account of the object layout in the scene, which is often ambiguous in the image domain, thereby increasing the accuracy of object labelling. Finally, we perform labelling and structure computation through a hierarchical robust PN Markov Random Field defined on voxels and super-voxels given by an octree. This allows us to infer the 3D structure and the object-class labels in a principled manner, through bounded approximate minimisation of a well defined and studied energy functional. In this thesis, we also introduce two object labelled datasets created from real world data. The 15 kilometre Yotta Labelled dataset consists of 8,000 images per camera view of the roadways of the United Kingdom with a subset of them annotated with object class labels and the second dataset is comprised of ground truth object labels for the publicly available KITTI dataset. Both the datasets are available publicly and we hope will be helpful to the vision research community

    Experience-driven optimal motion synthesis in complex and shared environments

    Get PDF
    Optimal loco-manipulation planning and control for high-dimensional systems based on general, non-linear optimisation allows for the specification of versatile motion subject to complex constraints. However, complex, non-linear system and environment dynamics, switching contacts, and collision avoidance in cluttered environments introduce non-convexity and discontinuity in the optimisation space. This renders finding optimal solutions in complex and changing environments an open and challenging problem in robotics. Global optimisation methods can take a prohibitively long time to converge. Slow convergence makes them unsuitable for live deployment and online re-planning of motion policies in response to changes in the task or environment. Local optimisation techniques, in contrast, converge fast within the basin of attraction of a minimum but may not converge at all without a good initial guess as they can easily get stuck in local minima. Local methods are, therefore, a suitable choice provided we can supply a good initial guess. If a similarity between problems can be found and exploited, a memory of optimal solutions can be computed and compressed efficiently in an offline computation process. During runtime, we can query this memory to bootstrap motion synthesis by providing a good initial seed to the local optimisation solver. In order to realise such a system, we need to address several connected problems and questions: First, the formulation of the optimisation problem (and its parametrisation to allow solutions to transfer to new scenarios), and related, the type and granularity of user input, along with a strategy for recovery and feedback in case of unexpected changes or failure. Second, a sampling strategy during the database/memory generation that explores the parameter space efficiently without resorting to exhaustive measures---i.e., to balance storage size/memory with online runtime to adapt/repair the initial guess. Third, the question of how to represent the problem and environment to parametrise, compute, store, retrieve, and exploit the memory efficiently during pre-computation and runtime. One strategy to make the problem computationally tractable is to decompose planning into a series of sequential sub-problems, e.g., contact-before-motion approaches which sequentially perform goal state planning, contact planning, motion planning, and encoding. Here, subsequent stages operate within the null-space of the constraints of the prior problem, such as the contact mode or sequence. This doctoral thesis follows this line of work. It investigates general optimisation-based formulations for motion synthesis along with a strategy for exploration, encoding, and exploitation of a versatile memory-of-motion for providing an initial guess to optimisation solvers. In particular, we focus on manipulation in complex environments with high-dimensional robot systems such as humanoids and mobile manipulators. The first part of this thesis focuses on collision-free motion generation to reliably generate motions. We present a general, collision-free inverse kinematics method using a combination of gradient-based local optimisation with random/evolution strategy restarting to achieve high success rates and avoid local minima. We use formulations for discrete collision avoidance and introduce a novel, computationally fast continuous collision avoidance objective based on conservative advancement and harmonic potential fields. Using this, we can synthesise continuous-time collision-free motion plans in the presence of moving obstacles. It further enables to discretise trajectories with fewer waypoints, which in turn considerably reduces the optimisation problem complexity, and thus, time to solve. The second part focuses on problem representations and exploration. We first introduce an efficient solution encoding for trajectory library-based approaches. This representation, paired with an accompanying exploration strategy for offline pre-computation, permits the application of inexpensive distance metrics during runtime. We demonstrate how our method efficiently re-uses trajectory samples, increases planning success rates, and reduces planning time while being highly memory-efficient. We subsequently present a method to explore the topological features of the solution space using tools from computational homology. This enables us to cluster solutions according to their inherent structure which increases the success of warm-starting for problems with discontinuities and multi-modality. The third part focuses on real-world deployment in laboratory and field experiments as well as incorporating user input. We present a framework for robust shared autonomy with a focus on continuous scene monitoring for assured safety. This framework further supports interactive adjustment of autonomy levels from fully teleoperated to automatic execution of stored behaviour sequences. Finally, we present sensing and control for the integration and embodiment of the presented methodology in high-dimensional real-world platforms used in laboratory experiments and real-world deployment. We validate our presented methods using hardware experiments on a variety of robot platforms demonstrating generalisation to other robots and environments

    Context-sensitive planning for autonomous vehicles

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1998.Includes bibliographical references (leaves 59-64).by David Vengerov.M.S

    Probabilistic Human-Robot Information Fusion

    Get PDF
    This thesis is concerned with combining the perceptual abilities of mobile robots and human operators to execute tasks cooperatively. It is generally agreed that a synergy of human and robotic skills offers an opportunity to enhance the capabilities of today’s robotic systems, while also increasing their robustness and reliability. Systems which incorporate both human and robotic information sources have the potential to build complex world models, essential for both automated and human decision making. In this work, humans and robots are regarded as equal team members who interact and communicate on a peer-to-peer basis. Human-robot communication is addressed using probabilistic representations common in robotics. While communication can in general be bidirectional, this work focuses primarily on human-to-robot information flow. More specifically, the approach advocated in this thesis is to let robots fuse their sensor observations with observations obtained from human operators. While robotic perception is well-suited for lower level world descriptions such as geometric properties, humans are able to contribute perceptual information on higher abstraction levels. Human input is translated into the machine representation via Human Sensor Models. A common mathematical framework for humans and robots reinforces the notion of true peer-to-peer interaction. Human-robot information fusion is demonstrated in two application domains: (1) scalable information gathering, and (2) cooperative decision making. Scalable information gathering is experimentally demonstrated on a system comprised of a ground vehicle, an unmanned air vehicle, and two human operators in a natural environment. Information from humans and robots was fused in a fully decentralised manner to build a shared environment representation on multiple abstraction levels. Results are presented in the form of information exchange patterns, qualitatively demonstrating the benefits of human-robot information fusion. The second application domain adds decision making to the human-robot task. Rational decisions are made based on the robots’ current beliefs which are generated by fusing human and robotic observations. Since humans are considered a valuable resource in this context, operators are only queried for input when the expected benefit of an observation exceeds the cost of obtaining it. The system can be seen as adjusting its autonomy at run-time based on the uncertainty in the robots’ beliefs. A navigation task is used to demonstrate the adjustable autonomy system experimentally. Results from two experiments are reported: a quantitative evaluation of human-robot team effectiveness, and a user study to compare the system to classical teleoperation. Results show the superiority of the system with respect to performance, operator workload, and usability

    Three-dimensional Laser-based Classification in Outdoor Environments

    Get PDF
    Robotics research strives for deploying autonomous systems in populated environments, such as inner city traffic. Autonomous cars need a reliable collision avoidance, but also an object recognition to distinguish different classes of traffic participants. For both tasks, fast three-dimensional laser range sensors generating multiple accurate laser range scans per second, each consisting of a vast number of laser points, are often employed. In this thesis, we investigate and develop classification algorithms that allow us to automatically assign semantic labels to laser scans. We mainly face two challenges: (1) we have to ensure consistent and correct classification results and (2) we must efficiently process a vast number of laser points per scan. In consideration of these challenges, we cover both stages of classification -- the feature extraction from laser range scans and the classification model that maps from the features to semantic labels. As for the feature extraction, we contribute by thoroughly evaluating important state-of-the-art histogram descriptors. We investigate critical parameters of the descriptors and experimentally show for the first time that the classification performance can be significantly improved using a large support radius and a global reference frame. As for learning the classification model, we contribute with new algorithms that improve the classification efficiency and accuracy. Our first approach aims at deriving a consistent point-wise interpretation of the whole laser range scan. By combining efficient similarity-preserving hashing and multiple linear classifiers, we considerably improve the consistency of label assignments, requiring only minimal computational overhead compared to a single linear classifier. In the last part of the thesis, we aim at classifying objects represented by segments. We propose a novel hierarchical segmentation approach comprising multiple stages and a novel mixture classification model of multiple bag-of-words vocabularies. We demonstrate superior performance of both approaches compared to their single component counterparts using challenging real world datasets.Ziel des Forschungsbereichs Robotik ist der Einsatz autonomer Systeme in natürlichen Umgebungen, wie zum Beispiel innerstädtischem Verkehr. Autonome Fahrzeuge benötigen einerseits eine zuverlässige Kollisionsvermeidung und andererseits auch eine Objekterkennung zur Unterscheidung verschiedener Klassen von Verkehrsteilnehmern. Verwendung finden vorallem drei-dimensionale Laserentfernungssensoren, die mehrere präzise Laserentfernungsscans pro Sekunde erzeugen und jeder Scan besteht hierbei aus einer hohen Anzahl an Laserpunkten. In dieser Dissertation widmen wir uns der Untersuchung und Entwicklung neuartiger Klassifikationsverfahren zur automatischen Zuweisung von semantischen Objektklassen zu Laserpunkten. Hierbei begegnen wir hauptsächlich zwei Herausforderungen: (1) wir möchten konsistente und korrekte Klassifikationsergebnisse erreichen und (2) die immense Menge an Laserdaten effizient verarbeiten. Unter Berücksichtigung dieser Herausforderungen untersuchen wir beide Verarbeitungsschritte eines Klassifikationsverfahrens -- die Merkmalsextraktion unter Nutzung von Laserdaten und das eigentliche Klassifikationsmodell, welches die Merkmale auf semantische Objektklassen abbildet. Bezüglich der Merkmalsextraktion leisten wir ein Beitrag durch eine ausführliche Evaluation wichtiger Histogrammdeskriptoren. Wir untersuchen kritische Deskriptorparameter und zeigen zum ersten Mal, dass die Klassifikationsgüte unter Nutzung von großen Merkmalsradien und eines globalen Referenzrahmens signifikant gesteigert wird. Bezüglich des Lernens des Klassifikationsmodells, leisten wir Beiträge durch neue Algorithmen, welche die Effizienz und Genauigkeit der Klassifikation verbessern. In unserem ersten Ansatz möchten wir eine konsistente punktweise Interpretation des gesamten Laserscans erreichen. Zu diesem Zweck kombinieren wir eine ähnlichkeitserhaltende Hashfunktion und mehrere lineare Klassifikatoren und erreichen hierdurch eine erhebliche Verbesserung der Konsistenz der Klassenzuweisung bei minimalen zusätzlichen Aufwand im Vergleich zu einem einzelnen linearen Klassifikator. Im letzten Teil der Dissertation möchten wir Objekte, die als Segmente repräsentiert sind, klassifizieren. Wir stellen eine neuartiges hierarchisches Segmentierungsverfahren und ein neuartiges Klassifikationsmodell auf Basis einer Mixtur mehrerer bag-of-words Vokabulare vor. Wir demonstrieren unter Nutzung von praxisrelevanten Datensätzen, dass beide Ansätze im Vergleich zu ihren Entsprechungen aus einer einzelnen Komponente zu erheblichen Verbesserungen führen
    corecore