21 research outputs found

    Terrain Negotiation of a Compliant Biped Robot Driven by Antagonistic Artificial Muscles

    Full text link

    Bio-Inspired Robotics

    Get PDF
    Modern robotic technologies have enabled robots to operate in a variety of unstructured and dynamically-changing environments, in addition to traditional structured environments. Robots have, thus, become an important element in our everyday lives. One key approach to develop such intelligent and autonomous robots is to draw inspiration from biological systems. Biological structure, mechanisms, and underlying principles have the potential to provide new ideas to support the improvement of conventional robotic designs and control. Such biological principles usually originate from animal or even plant models, for robots, which can sense, think, walk, swim, crawl, jump or even fly. Thus, it is believed that these bio-inspired methods are becoming increasingly important in the face of complex applications. Bio-inspired robotics is leading to the study of innovative structures and computing with sensory–motor coordination and learning to achieve intelligence, flexibility, stability, and adaptation for emergent robotic applications, such as manipulation, learning, and control. This Special Issue invites original papers of innovative ideas and concepts, new discoveries and improvements, and novel applications and business models relevant to the selected topics of ``Bio-Inspired Robotics''. Bio-Inspired Robotics is a broad topic and an ongoing expanding field. This Special Issue collates 30 papers that address some of the important challenges and opportunities in this broad and expanding field

    Climbing and Walking Robots

    Get PDF
    With the advancement of technology, new exciting approaches enable us to render mobile robotic systems more versatile, robust and cost-efficient. Some researchers combine climbing and walking techniques with a modular approach, a reconfigurable approach, or a swarm approach to realize novel prototypes as flexible mobile robotic platforms featuring all necessary locomotion capabilities. The purpose of this book is to provide an overview of the latest wide-range achievements in climbing and walking robotic technology to researchers, scientists, and engineers throughout the world. Different aspects including control simulation, locomotion realization, methodology, and system integration are presented from the scientific and from the technical point of view. This book consists of two main parts, one dealing with walking robots, the second with climbing robots. The content is also grouped by theoretical research and applicative realization. Every chapter offers a considerable amount of interesting and useful information

    Biomechanics and Energetics of Bipedal Locomotion on Uneven Terrain.

    Full text link
    Humans navigate uneven terrain in their everyday lives. From trails, grass, and uneven sidewalks, we constantly adapt to various surfaces in our environment. Past research has shown that walking on natural terrain, compared to walking on smooth flat surfaces, results in increased energy expenditure during locomotion. However, the biomechanical adaptations responsible for this energetic increase are unclear, since locomotion research is often conducted either on short walkways or in an outdoor setting, thus limiting data collections. To further our understanding of human locomotion on uneven terrain, I focused on quantifying the biomechanical and energetic changes due to increased terrain variability during walking and running. First, this thesis presents modifications to a regular exercise treadmill to allow for attachment of a separate uneven surface. Using this treadmill, I collected kinetic, kinematic, electromyographic, and energy expenditure data during continuous human walking and running. I showed that humans walking at 1.0m/s on an uneven surface, with a 2.5cm height variability, increased energy expenditure by 0.73W/kg (approx. 28%) compared to walking on smooth terrain. Greater energy expenditure was primarily caused by increased positive work at the hip and knee, with minor contributions from increased muscle activity and step parameter adaptations. I then showed that running at 2.3m/s on the same surface resulted in an energetic increase of 0.48W/kg (approx. 5%) compared to running on even terrain. In contrast to walking, humans compensated for uneven terrain during running by reducing positive work produced by the ankle and adapting a more crouched leg posture. The similar absolute increases in energetic cost between walking and running implied that much of this increase is likely due to surface height variability and changes in mechanical work. Finally, this work presents analytical and simulated analyses for the rimless wheel and simplest walker models. These analyses explored the relationship between gait dynamics, energy input strategies, surface unevenness and the energetic cost of walking. Together, these studies advance our understanding of the relationship between mechanics and energetics of human walking on uneven surfaces and could potentially lead to more robust and energetically efficient legged robots, prostheses and more effective clinical rehabilitation interventions.PhDKinesiology and Mechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/111616/1/voloshis_1.pd

    Robotics 2010

    Get PDF
    Without a doubt, robotics has made an incredible progress over the last decades. The vision of developing, designing and creating technical systems that help humans to achieve hard and complex tasks, has intelligently led to an incredible variety of solutions. There are barely technical fields that could exhibit more interdisciplinary interconnections like robotics. This fact is generated by highly complex challenges imposed by robotic systems, especially the requirement on intelligent and autonomous operation. This book tries to give an insight into the evolutionary process that takes place in robotics. It provides articles covering a wide range of this exciting area. The progress of technical challenges and concepts may illuminate the relationship between developments that seem to be completely different at first sight. The robotics remains an exciting scientific and engineering field. The community looks optimistically ahead and also looks forward for the future challenges and new development
    corecore