331 research outputs found

    Tractable robot simulation for terrain leveling

    Get PDF
    This thesis describes the problem of terrain leveling, in which one or more robots or vehicles are used to atten a terrain. The leveling operation is carried out either in preparation for construction, or for terrain reparation. In order to develop and prototype such a system, the use of simulation is advantageous. Such a simulation requires high fidelity to accurately model earth moving robots, which navigate uneven terrain and potentially manipulate the terrain itself. It has been found that existing tools for robot simulation typically do not adequately model deformable and/or uneven terrain. Software which does exist for this purpose, based on a traditional physics engine, is difficult if not impossible to run in real-time while achieving the desired accuracy. A number of possible approaches are proposed for a terrain leveling system using autonomous mobile robots. In order to test these approaches in simulation, a 2D simulator called Alexi has been developed, which uses the predictions of a neural network rather than physics simulation, to predict the motion of a vehicle and changes to a terrain. The neural network is trained using data captured from a high-fidelity non-real-time 3D simulator called Sandbox. Using a trained neural network to drive the 2D simulation provides considerable speed-up over the high-fidelity 3D simulation, allowing behaviour to be simulated in real-time while still capturing the physics of the agents and the environment. Two methods of simulating terrain in Sandbox are explored with results related to performance given for each. Two variants of Alexi are also explored, with results related to neural network training and generalization provided

    Towards a multilevel ant colony optimization

    Get PDF
    Masteroppgave i Informasjons- og kommunikasjonsteknologi IKT590 Universitetet i Agder 2014Ant colony optimization is a metaheuristic approach for solving combinatorial optimization problems which belongs to swarm intelligence techniques. Ant colony optimization algorithms are one of the most successful strands of swarm intelligence which has already shown very good performance in many combinatorial problems and for some real applications. This thesis introduces a new multilevel approach for ant colony optimization to solve the NP-hard problems shortest path and traveling salesman. We have reviewed different elements of multilevel algorithm which helped us in construction of our proposed multilevel ant colony optimization solution. We for comparison purposes implemented our own multi-threaded variant Dijkstra for solving shortest path to compare it with single level and multilevel ant colony optimization and reviewed different techniques such as genetic algorithms and Dijkstra’s algorithm. Our proposed multilevel ant colony optimization was developed based on the single level ant colony optimization which we both implemented. We have applied the novel multilevel ant colony optimization to solve the shortest path and traveling salesman problem. We show that the multilevel variant of ant colony optimization outperforms single level. The experimental results conducted demonstrate the overall performance of multilevel in comparison to the single level ant colony optimization, displaying a vast improvement when employing a multilevel approach in contrast to the classical single level approach. These results gave us a better understanding of the problems and provide indications for further research

    CONTROL STRATEGY OF MULTIROTOR PLATFORM UNDER NOMINAL AND FAULT CONDITIONS USING A DUAL-LOOP CONTROL SCHEME USED FOR EARTH-BASED SPACECRAFT CONTROL TESTING

    Get PDF
    Over the last decade, autonomous Unmanned Aerial Vehicles (UAVs) have seen increased usage in industrial, defense, research, and academic applications. Specific attention is given to multirotor platforms due to their high maneuverability, utility, and accessibility. As such, multirotors are often utilized in a variety of operating conditions such as populated areas, hazardous environments, inclement weather, etc. In this study, the effectiveness of multirotor platforms, specifically quadrotors, to behave as Earth-based satellite test platforms is discussed. Additionally, due to concerns over system operations under such circumstances, it becomes critical that multirotors are capable of operation despite experiencing undesired conditions and collisions which make the platform susceptible to on-board hardware faults. Without countermeasures to account for such faults, specifically actuator faults, a multirotors will experience catastrophic failure. In this thesis, a control strategy for a quadrotor under nominal and fault conditions is proposed. The process of defining the quadrotor dynamic model is discussed in detail. A dual-loop SMC/PID control scheme is proposed to control the attitude and position states of the nominal system. Actuator faults on-board the quadrotor are interpreted as motor performance losses, specifically loss in rotor speeds. To control a faulty system, an additive control scheme is implemented in conjunction with the nominal scheme. The quadrotor platform is developed via analysis of the various subcomponents. In addition, various physical parameters of the quadrotor are determined experimentally. Simulated and experimental testing showed promising results, and provide encouragement for further refinement in the future

    Open-ended Search through Minimal Criterion Coevolution

    Get PDF
    Search processes guided by objectives are ubiquitous in machine learning. They iteratively reward artifacts based on their proximity to an optimization target, and terminate upon solution space convergence. Some recent studies take a different approach, capitalizing on the disconnect between mainstream methods in artificial intelligence and the field\u27s biological inspirations. Natural evolution has an unparalleled propensity for generating well-adapted artifacts, but these artifacts are decidedly non-convergent. This new class of non-objective algorithms induce a divergent search by rewarding solutions according to their novelty with respect to prior discoveries. While the diversity of resulting innovations exhibit marked parallels to natural evolution, the methods by which search is driven remain unnatural. In particular, nature has no need to characterize and enforce novelty; rather, it is guided by a single, simple constraint: survive long enough to reproduce. The key insight is that such a constraint, called the minimal criterion, can be harnessed in a coevolutionary context where two populations interact, finding novel ways to satisfy their reproductive constraint with respect to each other. Among the contributions of this dissertation, this approach, called minimal criterion coevolution (MCC), is the primary (1). MCC is initially demonstrated in a maze domain (2) where it evolves increasingly complex mazes and solutions. An enhancement to the initial domain (3) is then introduced, allowing mazes to expand unboundedly and validating MCC\u27s propensity for open-ended discovery. A more natural method of diversity preservation through resource limitation (4) is introduced and shown to maintain population diversity without comparing genetic distance. Finally, MCC is demonstrated in an evolutionary robotics domain (5) where it coevolves increasingly complex bodies with brain controllers to achieve principled locomotion. The overall benefit of these contributions is a novel, general, algorithmic framework for the continual production of open-ended dynamics without the need for a characterization of behavioral novelty
    • …
    corecore