2,226 research outputs found

    Improving Security in Group Data Sharing Using Multicast Key Agreement

    Get PDF
    In this paper, we study Group key agreement means multiple parties want to create a common secret key to be used to exchange information securely. The group key agreement with an arbitrary connectivity graph, where each user is only aware of his neighbor and has no information about the existence of other users. Further, he has no information about the network topology. We implement the existing system with more time efficient manner and provide a multicast key generation server which is expected in future scope by current authors. We replace the Diffie Hellman key exchange protocol by a new multicast key exchange protocol that can work with one to one and one to many functionality. We also tend to implement a strong symmetric encryption for improving file security in the system

    Efficiency in MANET Systems using Energy efficient encryption algorithm

    Get PDF
    In this paper, we study Group key agreement means multiple parties want to create a common secret key to be used to exchange information securely. The group key agreement with an arbitrary connectivity graph, where each user is only aware of his neighbor and has no information about the existence of other users. Further, he has no information about the network topology. We implement the existing system with more time efficient manner and provide a multicast key generation server which is expected in future scope by current authors. We replace the Diffie Hellman key exchange protocol by a new multicast key exchange protocol that can work with one to one and one to many functionality. We also tend to implement a strong symmetric encryption for improving file security in the s

    Scalable and Secure Dynamic Key Management and Channel Aware Routing in Mobile Adhoc Networks

    Get PDF
    A MANET (Mobile Ad-hoc Network) is an infrastructure-less self configuring wireless networks of routers. Key management is at the center of providing network security via cryptographic mechanisms with a high-availability feature. Dynamic key is the efficient assistance for network scalability. Routing protocol used here is a form of reactive routing called CA-AOMDV and compared with Table driven routing called DSDV. Channel aware routing protocol quality of the channel which can be measured in terms of suitable metrics. This paper leads to an emphasis on Black hole attack and to develop a dynamic key framework using RSA algorithm

    Security of User Data in Local Connectivity Using Multicast Key Agreement

    Get PDF
    In this paper, we be trained team key contract approach a couple of parties need to create a usual secret key to be used to alternate understanding securely. The staff key contract with an arbitrary connectivity graph, where each and every consumer is simplest mindful of his neighbor and has no information about the existence of different customers. Additional, he has no knowledge concerning the community topology. We put into effect the existing approach with extra time efficient method and provide a multicast key generation server which is predicted in future scope with the aid of present authors. We replace the Diffie Hellman key trade protocol through a brand new multicast key exchange protocol that may work with one to 1 and one to many functionality. We additionally tend to put into effect a robust symmetric encryption for improving file safety within the process

    Securing User Data in Local Connectivity using Multicast Key Agreement

    Get PDF
    In this paper, we gain knowledge of crew key contract means more than one parties need to create a original secret key for use to alternate know-how securely. The staff key agreement with an arbitrary connectivity graph, where each and every consumer is most effective aware of his neighbor and has no expertise concerning the existence of alternative users. Extra, he has no expertise concerning the community topology. We implement the present procedure with extra time efficient method and provide a multicast key new release server which is expected in future scope with the aid of current authors. We exchange the Diffie Hellman key trade protocol by using a new multicast key exchange protocol that can work with one to at least one and one to many functionality. We additionally tend to enforce a robust symmetric encryption for bettering file protection in the procedure

    Secure Data Transactions based on Hash Coded Starvation Blockchain Security using Padded Ring Signature-ECC for Network of Things

    Get PDF
    Blockchain is one of the decentralized processes in a worldview that works with parallel and distributed ledger technology, the application process, and service-oriented design. To propose a Secure data Transaction based on Hash coded Starvation Blockchain security using Padded Ring signature-ECC for Network of Things. Initially, the crypto policy is authenticated based on the user-owner shared resource policy and access rights. This creates a Public blockchain environment with a P2P Blockchain network. The owner encrypts the data using optimized ECC through Hash-coded Starvation Blockchain security (HCSBS). This makes the encrypted block's provable partition chain Link (P2CL). The encrypted blocks are transmitted into the network of nodes monitored by NoT. During the data transmission, the Network of Things monitors the transaction flow to verify the authenticity over the network of nodes. The monitored data be securely stored in transaction Block storage with the hash-indexed block with chain ring policy (HICLP). This creates controller node aggregation over the transaction environment to securely transfer the data to the peer end. The User gets the access Key to decrypt the data with policy aggregated shared resource policy to access the data. The proposed system produces high security as well compared to the previous design

    Context Data Management for Large Scale Context-Aware Ubiquitous Systems

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore