518 research outputs found

    Note di Matematica 26

    Get PDF
    Abstract. We point out the geometric significance of a part of the theorem regarding the maximality of the orthogonal group in the equiaffine group proved in Keywords: Erlanger Programm, definability, Lω 1 ω -logic MSC 2000 classification: 03C40, 14L35, 51F25, 51A99 A. Schleiermacher and K. Strambach [12] proved a very interesting result regarding the maximaility of the group of orthogonal transformations and of that of Euclidean similarities inside certain groups of affine transformations. Although similar results have been proved earlier, this is the first time that the base field for the groups in question was not the field of real numbers, but an arbitrary Pythagorean field which admits only Archimedean orderings. They also state, as geometric significance of the result regarding the maximality of the group of Euclidean motions in the unimodular group over the reals, that there is "no geometry between the classical Euclidean and the affine geometry". The aim of this note is to point out the exact geometric meaning of the positive part of the 2-dimensional part their theorem, in the case in which the underlying field is an Archimedean ordered Euclidean field. In this case their theorem states that: (1) the group G 1 of Euclidean isometries is maximal in the group H 1 of equiaffinities (affine transformations that preserve non-directed area), and that (2) the group G 2 of Euclidean similarities is maximal in the group H 2 of affine transformations. The restriction to the 2-dimensional case is not essential but simplifies the presentation. The geometric counterpart of group-theoretic results in the spirit of the Erlanger Programm is given by Beth's theorem, as was emphasized by Büch

    The Steiner-Lehmus theorem and "triangles with congruent medians are isosceles" hold in weak geometries

    Full text link
    We prove that (i) a generalization of the Steiner-Lehmus theorem due to A. Henderson holds in Bachmann's standard ordered metric planes, (ii) that a variant of Steiner-Lehmus holds in all metric planes, and (iii) that the fact that a triangle with two congruent medians is isosceles holds in Hjelmslev planes without double incidences of characteristic 3\neq 3

    On Constructive Axiomatic Method

    Get PDF
    In this last version of the paper one may find a critical overview of some recent philosophical literature on Axiomatic Method and Genetic Method.Comment: 25 pages, no figure

    A Galois connection between classical and intuitionistic logics. I: Syntax

    Full text link
    In a 1985 commentary to his collected works, Kolmogorov remarked that his 1932 paper "was written in hope that with time, the logic of solution of problems [i.e., intuitionistic logic] will become a permanent part of a [standard] course of logic. A unified logical apparatus was intended to be created, which would deal with objects of two types - propositions and problems." We construct such a formal system QHC, which is a conservative extension of both the intuitionistic predicate calculus QH and the classical predicate calculus QC. The only new connectives ? and ! of QHC induce a Galois connection (i.e., a pair of adjoint functors) between the Lindenbaum posets (i.e. the underlying posets of the Lindenbaum algebras) of QH and QC. Kolmogorov's double negation translation of propositions into problems extends to a retraction of QHC onto QH; whereas Goedel's provability translation of problems into modal propositions extends to a retraction of QHC onto its QC+(?!) fragment, identified with the modal logic QS4. The QH+(!?) fragment is an intuitionistic modal logic, whose modality !? is a strict lax modality in the sense of Aczel - and thus resembles the squash/bracket operation in intuitionistic type theories. The axioms of QHC attempt to give a fuller formalization (with respect to the axioms of intuitionistic logic) to the two best known contentual interpretations of intiuitionistic logic: Kolmogorov's problem interpretation (incorporating standard refinements by Heyting and Kreisel) and the proof interpretation by Orlov and Heyting (as clarified by G\"odel). While these two interpretations are often conflated, from the viewpoint of the axioms of QHC neither of them reduces to the other one, although they do overlap.Comment: 47 pages. The paper is rewritten in terms of a formal meta-logic (a simplified version of Isabelle's meta-logic

    Some new results on decidability for elementary algebra and geometry

    Get PDF
    We carry out a systematic study of decidability for theories of (a) real vector spaces, inner product spaces, and Hilbert spaces and (b) normed spaces, Banach spaces and metric spaces, all formalised using a 2-sorted first-order language. The theories for list (a) turn out to be decidable while the theories for list (b) are not even arithmetical: the theory of 2-dimensional Banach spaces, for example, has the same many-one degree as the set of truths of second-order arithmetic. We find that the purely universal and purely existential fragments of the theory of normed spaces are decidable, as is the AE fragment of the theory of metric spaces. These results are sharp of their type: reductions of Hilbert's 10th problem show that the EA fragments for metric and normed spaces and the AE fragment for normed spaces are all undecidable.Comment: 79 pages, 9 figures. v2: Numerous minor improvements; neater proofs of Theorems 8 and 29; v3: fixed subscripts in proof of Lemma 3

    On Jordan's measurements

    Get PDF
    The Jordan measure, the Jordan curve theorem, as well as the other generic references to Camille Jordan's (1838-1922) achievements highlight that the latter can hardly be reduced to the "great algebraist" whose masterpiece, the Trait\'e des substitutions et des equations alg\'ebriques, unfolded the group-theoretical content of \'Evariste Galois's work. The present paper appeals to the database of the reviews of the Jahrbuch \"uber die Fortschritte der Mathematik (1868-1942) for providing an overview of Jordan's works. On the one hand, we shall especially investigate the collective dimensions in which Jordan himself inscribed his works (1860-1922). On the other hand, we shall address the issue of the collectives in which Jordan's works have circulated (1860-1940). Moreover, the time-period during which Jordan has been publishing his works, i.e., 1860-1922, provides an opportunity to investigate some collective organizations of knowledge that pre-existed the development of object-oriented disciplines such as group theory (Jordan-H\"older theorem), linear algebra (Jordan's canonical form), topology (Jordan's curve), integral theory (Jordan's measure), etc. At the time when Jordan was defending his thesis in 1860, it was common to appeal to transversal organizations of knowledge, such as what the latter designated as the "theory of order." When Jordan died in 1922, it was however more and more common to point to object-oriented disciplines as identifying both a corpus of specialized knowledge and the institutionalized practices of transmissions of a group of professional specialists
    corecore