371 research outputs found

    Ternary Compression for Communication-Efficient Federated Learning

    Full text link
    Learning over massive data stored in different locations is essential in many real-world applications. However, sharing data is full of challenges due to the increasing demands of privacy and security with the growing use of smart mobile devices and IoT devices. Federated learning provides a potential solution to privacy-preserving and secure machine learning, by means of jointly training a global model without uploading data distributed on multiple devices to a central server. However, most existing work on federated learning adopts machine learning models with full-precision weights, and almost all these models contain a large number of redundant parameters that do not need to be transmitted to the server, consuming an excessive amount of communication costs. To address this issue, we propose a federated trained ternary quantization (FTTQ) algorithm, which optimizes the quantized networks on the clients through a self-learning quantization factor. A convergence proof of the quantization factor and the unbiasedness of FTTQ is given. In addition, we propose a ternary federated averaging protocol (T-FedAvg) to reduce the upstream and downstream communication of federated learning systems. Empirical experiments are conducted to train widely used deep learning models on publicly available datasets, and our results demonstrate the effectiveness of FTTQ and T-FedAvg compared with the canonical federated learning algorithms in reducing communication costs and maintaining the learning performance

    Learning Sparse & Ternary Neural Networks with Entropy-Constrained Trained Ternarization (EC2T)

    Full text link
    Deep neural networks (DNN) have shown remarkable success in a variety of machine learning applications. The capacity of these models (i.e., number of parameters), endows them with expressive power and allows them to reach the desired performance. In recent years, there is an increasing interest in deploying DNNs to resource-constrained devices (i.e., mobile devices) with limited energy, memory, and computational budget. To address this problem, we propose Entropy-Constrained Trained Ternarization (EC2T), a general framework to create sparse and ternary neural networks which are efficient in terms of storage (e.g., at most two binary-masks and two full-precision values are required to save a weight matrix) and computation (e.g., MAC operations are reduced to a few accumulations plus two multiplications). This approach consists of two steps. First, a super-network is created by scaling the dimensions of a pre-trained model (i.e., its width and depth). Subsequently, this super-network is simultaneously pruned (using an entropy constraint) and quantized (that is, ternary values are assigned layer-wise) in a training process, resulting in a sparse and ternary network representation. We validate the proposed approach in CIFAR-10, CIFAR-100, and ImageNet datasets, showing its effectiveness in image classification tasks.Comment: Proceedings of the CVPR'20 Joint Workshop on Efficient Deep Learning in Computer Vision. Code is available at https://github.com/d-becking/efficientCNN

    3DQ: Compact Quantized Neural Networks for Volumetric Whole Brain Segmentation

    Full text link
    Model architectures have been dramatically increasing in size, improving performance at the cost of resource requirements. In this paper we propose 3DQ, a ternary quantization method, applied for the first time to 3D Fully Convolutional Neural Networks (F-CNNs), enabling 16x model compression while maintaining performance on par with full precision models. We extensively evaluate 3DQ on two datasets for the challenging task of whole brain segmentation. Additionally, we showcase our method's ability to generalize on two common 3D architectures, namely 3D U-Net and V-Net. Outperforming a variety of baselines, the proposed method is capable of compressing large 3D models to a few MBytes, alleviating the storage needs in space critical applications.Comment: Accepted to MICCAI 201

    Structured Sparse Ternary Compression for Convolutional Layers in Federated Learning

    Get PDF
    In Cross-device Federated Learning, communication efficiency is of paramount importance. Sparse Ternary Compression (STC) is one of the most effective techniques for considerably reducing the per-round communication cost of Federated Learning (FL) without significantly degrading the accuracy of the global model, by using ternary quantization in series to topk sparsification. In this paper, we propose an original variant of STC that is specifically designed and implemented for convolutional layers. Our variant is originally based on the experimental evidence that a pattern exists in the distribution of client updates, namely, the difference between the received global model and the locally trained model. In particular, we have experimentally found that the largest (in absolute value) updates for convolutional layers tend to form clusters in a kernel-wise fashion. Therefore, our primary novel idea is to a-priori restrict the elements of STC updates to lay on such a structured pattern, thus allowing us to further reduce the STC communication cost. We have designed, implemented, and evaluated our novel technique, called Structured Sparse Ternary Compression (SSTC). Reported experimental results show that SSTC shrinks compressed updates by a factor of x3 with respect to traditional STC and with a reduction up to x104 with respect to uncompressed FedAvg, at the expense of negligible degradation of the global model accuracy

    Breaking the Communication-Privacy-Accuracy Tradeoff with ff-Differential Privacy

    Full text link
    We consider a federated data analytics problem in which a server coordinates the collaborative data analysis of multiple users with privacy concerns and limited communication capability. The commonly adopted compression schemes introduce information loss into local data while improving communication efficiency, and it remains an open problem whether such discrete-valued mechanisms provide any privacy protection. In this paper, we study the local differential privacy guarantees of discrete-valued mechanisms with finite output space through the lens of ff-differential privacy (DP). More specifically, we advance the existing literature by deriving tight ff-DP guarantees for a variety of discrete-valued mechanisms, including the binomial noise and the binomial mechanisms that are proposed for privacy preservation, and the sign-based methods that are proposed for data compression, in closed-form expressions. We further investigate the amplification in privacy by sparsification and propose a ternary stochastic compressor. By leveraging compression for privacy amplification, we improve the existing methods by removing the dependency of accuracy (in terms of mean square error) on communication cost in the popular use case of distributed mean estimation, therefore breaking the three-way tradeoff between privacy, communication, and accuracy. Finally, we discuss the Byzantine resilience of the proposed mechanism and its application in federated learning
    corecore